mirror of
https://github.com/zint/zint
synced 2024-11-16 20:57:25 +13:00
716 lines
26 KiB
C
716 lines
26 KiB
C
|
/* dotcode.c - Handles DotCode */
|
||
|
|
||
|
/*
|
||
|
libzint - the open source barcode library
|
||
|
Copyright (C) 2016 Robin Stuart <rstuart114@gmail.com>
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
1. Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
2. Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
3. Neither the name of the project nor the names of its contributors
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Attempts to encode DotCode according to AIMD013 Rev 1.34a, dated Feb 19, 2009
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <stdlib.h>
|
||
|
#ifndef _MSC_VER
|
||
|
#include <stdint.h>
|
||
|
#else
|
||
|
#include <malloc.h>
|
||
|
#include "ms_stdint.h"
|
||
|
#endif
|
||
|
#include "common.h"
|
||
|
#include "gs1.h"
|
||
|
|
||
|
/*
|
||
|
static const char *C128Table[107] = {
|
||
|
// Code 128 character encodation
|
||
|
"212222", "222122", "222221", "121223", "121322", "131222", "122213",
|
||
|
"122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222",
|
||
|
"123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222",
|
||
|
"321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323",
|
||
|
"131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133",
|
||
|
"112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113",
|
||
|
"213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111",
|
||
|
"221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214",
|
||
|
"112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112",
|
||
|
"134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112",
|
||
|
"421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311",
|
||
|
"411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232",
|
||
|
"2331112"
|
||
|
};
|
||
|
*/
|
||
|
|
||
|
/* Check if the next character is directly encodable in code set A (Annex F.II.D) */
|
||
|
int datum_a(unsigned char source[], int position, int length) {
|
||
|
int retval = 0;
|
||
|
|
||
|
if (position < length) {
|
||
|
if (source[position] <= 95) {
|
||
|
retval = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Check if the next character is directly encodable in code set B (Annex F.II.D) */
|
||
|
int datum_b(unsigned char source[], int position, int length) {
|
||
|
int retval = 0;
|
||
|
|
||
|
if (position < length) {
|
||
|
if (source[position] >= 32) {
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
switch(source[position]) {
|
||
|
case 9: // HT
|
||
|
case 28: // FS
|
||
|
case 29: // GS
|
||
|
case 30: // RS
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
if (position != length - 2) {
|
||
|
if ((source[position] == 13) && (source[position + 1] == 10)) { // CRLF
|
||
|
retval = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Check if the next characters are directly encodable in code set C (Annex F.II.D) */
|
||
|
int datum_c(unsigned char source[], int position, int length) {
|
||
|
int retval = 0;
|
||
|
|
||
|
if (position < length - 2) {
|
||
|
if (((source[position] >= '0') && (source[position] <= '9'))
|
||
|
&& ((source[position + 1] >= '0') && (source[position + 1] <= '9')))
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Returns how many consecutive digits lie immediately ahead (Annex F.II.A) */
|
||
|
int n_digits(unsigned char source[], int position, int length) {
|
||
|
int i;
|
||
|
|
||
|
for(i = position; ((source[i] >= '0') && (source[i] <= '9')) && (i < length); i++);
|
||
|
|
||
|
return i - position;
|
||
|
}
|
||
|
|
||
|
/* checks ahead for 10 or more digits starting "17xxxxxx10..." (annex F.II.B) */
|
||
|
int seventeen_ten(unsigned char source[], int position, int length) {
|
||
|
int found = 0;
|
||
|
|
||
|
if(n_digits(source, position, length) >= 10) {
|
||
|
if(((source[position] == '1') && (source[position + 1] == '7'))
|
||
|
&& ((source[position + 8] == '1') && (source[position + 9] == '0'))) {
|
||
|
found = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
/* checks how many characters ahead can be reached while datum_c is true,
|
||
|
* returning the resulting number of codewords (Annex F.II.E)
|
||
|
*/
|
||
|
int ahead_c(unsigned char source[], int position, int length) {
|
||
|
int count = 0;
|
||
|
|
||
|
for(int i = position; (i < length) && datum_c(source, i, length); i+= 2) {
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* Annex F.II.F */
|
||
|
int try_c(unsigned char source[], int position, int length) {
|
||
|
int retval = 0;
|
||
|
|
||
|
if(n_digits(source, position, length) > 0) {
|
||
|
if(ahead_c(source, position, length) > ahead_c(source, position + 1, length)) {
|
||
|
retval = ahead_c(source, position, length);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Annex F.II.G */
|
||
|
int ahead_a(unsigned char source[], int position, int length) {
|
||
|
int count = 0;
|
||
|
|
||
|
for(int i = position; ((i < length) && datum_a(source, i, length))
|
||
|
&& (try_c(source, i, length) < 2); i++) {
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* Annex F.II.H */
|
||
|
int ahead_b(unsigned char source[], int position, int length) {
|
||
|
int count = 0;
|
||
|
|
||
|
for(int i = position; ((i < length) && datum_b(source, i, length))
|
||
|
&& (try_c(source, i, length) < 2); i++) {
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* checks if the next character is in the range 128 to 255 (Annex F.II.I) */
|
||
|
int binary(unsigned char source[], int position, int length) {
|
||
|
int retval = 0;
|
||
|
|
||
|
if(source[position] >= 128) {
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
int dotcode(struct zint_symbol *symbol, unsigned char source[], int length) {
|
||
|
int input_position, array_length, i;
|
||
|
char encoding_mode;
|
||
|
int inside_macro, done;
|
||
|
int ecc_length;
|
||
|
int debug = 1;
|
||
|
int binary_buffer_size = 0;
|
||
|
int lawrencium[6]; // Reversed radix 103 values
|
||
|
|
||
|
/* Test data */
|
||
|
/*
|
||
|
symbol->input_mode = GS1_MODE;
|
||
|
length = 15;
|
||
|
source[0] = '0';
|
||
|
source[1] = '2';
|
||
|
source[2] = '[';
|
||
|
source[3] = 0x80;
|
||
|
source[4] = 0xd0;
|
||
|
source[5] = 0x20;
|
||
|
source[6] = 0xd2;
|
||
|
source[7] = 0x00;
|
||
|
source[8] = 0x00;
|
||
|
source[9] = 0x00;
|
||
|
source[10] = 0x00;
|
||
|
source[11] = 48;
|
||
|
source[12] = 0xcc;
|
||
|
source[13] = 49;
|
||
|
source[14] = 0x1f;
|
||
|
*/
|
||
|
|
||
|
#ifndef _MSC_VER
|
||
|
int codeword_array[length * 2];
|
||
|
#else
|
||
|
int* codeword_array = (int *) _alloca(length * 2 * sizeof(int));
|
||
|
#endif /* _MSC_VER */
|
||
|
|
||
|
#if defined(_MSC_VER) && _MSC_VER == 1200
|
||
|
uint64_t binary_buffer = 0;
|
||
|
#else
|
||
|
uint64_t binary_buffer = 0ULL;
|
||
|
#endif
|
||
|
|
||
|
/* Analyse input data stream and encode using algorithm from Annex F */
|
||
|
input_position = 0;
|
||
|
array_length = 0;
|
||
|
encoding_mode = 'C';
|
||
|
inside_macro = 0;
|
||
|
|
||
|
if (symbol->output_options & READER_INIT) {
|
||
|
codeword_array[array_length] = 109; // FNC3
|
||
|
array_length++;
|
||
|
}
|
||
|
|
||
|
if (symbol->input_mode != GS1_MODE) {
|
||
|
codeword_array[array_length] = 107; // FNC1
|
||
|
array_length++;
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
done = 0;
|
||
|
printf("[%c] ", encoding_mode);
|
||
|
|
||
|
/* Step A */
|
||
|
if ((input_position == length - 2) && (inside_macro != 0) && (inside_macro != 100)) {
|
||
|
// inside_macro only gets set to 97, 98 or 99 if the last two characters are RS/EOT
|
||
|
input_position += 2;
|
||
|
done = 1;
|
||
|
if (debug) { printf("A "); }
|
||
|
}
|
||
|
|
||
|
if ((input_position == length - 1) && (inside_macro == 100)) {
|
||
|
// inside_macro only gets set to 100 if the last character is EOT
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("A "); }
|
||
|
}
|
||
|
|
||
|
/* Step B1 */
|
||
|
if ((!done) && (encoding_mode == 'C')) {
|
||
|
if ((array_length == 0) && (length > 9)) {
|
||
|
if((source[input_position] == '[')
|
||
|
&& (source[input_position + 1] == ')')
|
||
|
&& (source[input_position + 2] == '>')
|
||
|
&& (source[input_position + 3] == 30) // RS
|
||
|
&& (source[length - 1] == 04)) { // EOT
|
||
|
|
||
|
codeword_array[array_length] = 106; // Latch B
|
||
|
array_length++;
|
||
|
encoding_mode = 'B';
|
||
|
|
||
|
if ((source[input_position + 6] == 29) && (source[length - 2] == 30)) { // GS/RS
|
||
|
if ((source[input_position + 4] == '0') && (source[input_position + 5] == '5')) {
|
||
|
codeword_array[array_length] = 97; // Macro
|
||
|
array_length++;
|
||
|
input_position += 7;
|
||
|
inside_macro = 97;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B1/1 "); }
|
||
|
}
|
||
|
|
||
|
if ((source[input_position + 4] == '0') && (source[input_position + 5] == '6')) {
|
||
|
codeword_array[array_length] = 98; // Macro
|
||
|
array_length++;
|
||
|
input_position += 7;
|
||
|
inside_macro = 98;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B1/2 "); }
|
||
|
}
|
||
|
|
||
|
if ((source[input_position + 4] == '1') && (source[input_position + 5] == '2')) {
|
||
|
codeword_array[array_length] = 99; // Macro
|
||
|
array_length++;
|
||
|
input_position += 7;
|
||
|
inside_macro = 99;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B1/3 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!done) {
|
||
|
codeword_array[array_length] = 100; // Macro
|
||
|
array_length++;
|
||
|
input_position += 4;
|
||
|
inside_macro = 100;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B1/4 "); }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step B2 */
|
||
|
if ((!done) && (encoding_mode == 'C')) {
|
||
|
if (seventeen_ten(source, input_position, length)) {
|
||
|
codeword_array[array_length] = 100; // (17)...(10)
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = ((source[input_position + 2] - '0') * 10) + (source[input_position + 3] - '0');
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = ((source[input_position + 4] - '0') * 10) + (source[input_position + 5] - '0');
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = ((source[input_position + 6] - '0') * 10) + (source[input_position + 7] - '0');
|
||
|
array_length++;
|
||
|
input_position += 10;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B2/1 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((!done) && (encoding_mode == 'C')) {
|
||
|
if (datum_c(source, input_position, length) || ((source[input_position] == '[') && (symbol->input_mode == GS1_MODE))) {
|
||
|
if (source[input_position] == '[') {
|
||
|
codeword_array[array_length] = 107; // FNC1
|
||
|
input_position++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = ((source[input_position] - '0') * 10) + (source[input_position + 1] - '0');
|
||
|
input_position += 2;
|
||
|
}
|
||
|
array_length++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("B2/2 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Setp B3 */
|
||
|
if ((!done) && (encoding_mode == 'C')) {
|
||
|
if (binary(source, input_position, length)) {
|
||
|
if (n_digits(source, input_position + 1, length) > 0) {
|
||
|
if ((source[input_position] - 128) < 32) {
|
||
|
codeword_array[array_length] = 110; // Bin Shift A
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 + 64;
|
||
|
array_length++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 111; // Bin Shift B
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 - 32;
|
||
|
array_length++;
|
||
|
}
|
||
|
input_position++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 112; // Bin Latch
|
||
|
array_length++;
|
||
|
encoding_mode = 'X';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("B3 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step B4 */
|
||
|
if ((!done) && (encoding_mode == 'C')) {
|
||
|
int m = ahead_a(source, input_position, length);
|
||
|
int n = ahead_b(source, input_position, length);
|
||
|
if (m > n) {
|
||
|
codeword_array[array_length] = 101; // Latch A
|
||
|
array_length++;
|
||
|
encoding_mode = 'A';
|
||
|
} else {
|
||
|
if (n <= 4) {
|
||
|
codeword_array[array_length] = 101 + n; // nx Shift B
|
||
|
array_length++;
|
||
|
|
||
|
for(i = 0; i < n; i++) {
|
||
|
codeword_array[array_length] = source[input_position] - 32;
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
}
|
||
|
} else {
|
||
|
codeword_array[array_length] = 106; // Latch B
|
||
|
array_length++;
|
||
|
encoding_mode = 'B';
|
||
|
}
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("B4 "); }
|
||
|
}
|
||
|
|
||
|
/* Step C1 */
|
||
|
if ((!done) && (encoding_mode == 'B')) {
|
||
|
int n = try_c(source, input_position, length);
|
||
|
|
||
|
if (n >= 2) {
|
||
|
if (n <= 4) {
|
||
|
codeword_array[array_length] = 103 + (n - 2); // nx Shift C
|
||
|
array_length++;
|
||
|
for(i = 0; i < n; i++) {
|
||
|
codeword_array[array_length] = ((source[input_position] - '0') * 10) + (source[input_position + 1] - '0');
|
||
|
array_length++;
|
||
|
input_position += 2;
|
||
|
}
|
||
|
} else {
|
||
|
codeword_array[array_length] = 106; // Latch C
|
||
|
array_length++;
|
||
|
encoding_mode = 'C';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("C1 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step C2 */
|
||
|
if ((!done) && (encoding_mode == 'B')) {
|
||
|
if ((source[input_position] == '[') && (symbol->input_mode == GS1_MODE)) {
|
||
|
codeword_array[array_length] = 107; // FNC1
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("C2/1 "); }
|
||
|
} else {
|
||
|
if (datum_b(source, input_position, length)) {
|
||
|
codeword_array[array_length] = source[input_position] - 32;
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("C2/2 "); }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step C3 */
|
||
|
if ((!done) && (encoding_mode == 'B')) {
|
||
|
if (binary(source, input_position, length)) {
|
||
|
if (datum_b(source, input_position + 1, length)) {
|
||
|
if ((source[input_position] - 128) < 32) {
|
||
|
codeword_array[array_length] = 110; // Bin Shift A
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 + 64;
|
||
|
array_length++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 111; // Bin Shift B
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 - 32;
|
||
|
array_length++;
|
||
|
}
|
||
|
input_position++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 112; // Bin Latch
|
||
|
array_length++;
|
||
|
encoding_mode = 'X';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("C3 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step C4 */
|
||
|
if ((!done) && (encoding_mode == 'B')) {
|
||
|
if (ahead_a(source, input_position, length) == 1) {
|
||
|
codeword_array[array_length] = 101; // Shift A
|
||
|
array_length++;
|
||
|
if (source[input_position] < 32) {
|
||
|
codeword_array[array_length] = source[input_position] + 64;
|
||
|
} else {
|
||
|
codeword_array[array_length] = source[input_position] - 32;
|
||
|
}
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 102; // Latch A
|
||
|
array_length++;
|
||
|
encoding_mode = 'A';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("C4 "); }
|
||
|
}
|
||
|
|
||
|
/* Step D1 */
|
||
|
if ((!done) && (encoding_mode == 'A')) {
|
||
|
int n = try_c(source, input_position, length);
|
||
|
if (n >= 2) {
|
||
|
if (n <= 4) {
|
||
|
codeword_array[array_length] = 103 + (n - 2); // nx Shift C
|
||
|
array_length++;
|
||
|
for(i = 0; i < n; i++) {
|
||
|
codeword_array[array_length] = ((source[input_position] - '0') * 10) + (source[input_position + 1] - '0');
|
||
|
array_length++;
|
||
|
input_position += 2;
|
||
|
}
|
||
|
} else {
|
||
|
codeword_array[array_length] = 106; // Latch C
|
||
|
array_length++;
|
||
|
encoding_mode = 'C';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("D1 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step D2 */
|
||
|
if ((!done) && (encoding_mode == 'A')) {
|
||
|
if ((source[input_position] == '[') && (symbol->input_mode == GS1_MODE)) {
|
||
|
codeword_array[array_length] = 107; // FNC1
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("D2/1 "); }
|
||
|
} else {
|
||
|
if (datum_a(source, input_position, length)) {
|
||
|
if (source[input_position] < 32) {
|
||
|
codeword_array[array_length] = source[input_position] +64;
|
||
|
} else {
|
||
|
codeword_array[array_length] = source[input_position] - 32;
|
||
|
}
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("D2/2 "); }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step D3 */
|
||
|
if ((!done) && (encoding_mode == 'A')) {
|
||
|
if (binary(source, input_position, length)) {
|
||
|
if (datum_a(source, input_position + 1, length)) {
|
||
|
if ((source[input_position] - 128) < 32) {
|
||
|
codeword_array[array_length] = 110; // Bin Shift A
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 + 64;
|
||
|
array_length++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 111; // Bin Shift B
|
||
|
array_length++;
|
||
|
codeword_array[array_length] = source[input_position] - 128 - 32;
|
||
|
array_length++;
|
||
|
}
|
||
|
input_position++;
|
||
|
} else {
|
||
|
codeword_array[array_length] = 112; // Bin Latch
|
||
|
array_length++;
|
||
|
encoding_mode = 'X';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("D3 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step D4 */
|
||
|
if ((!done) && (encoding_mode == 'A')) {
|
||
|
int n = ahead_b(source, input_position, length);
|
||
|
|
||
|
if (n <= 6) {
|
||
|
codeword_array[array_length] = 95 + n; // nx Shift B
|
||
|
array_length++;
|
||
|
for(i = 0; i < n; i++) {
|
||
|
codeword_array[array_length] = source[input_position] - 32;
|
||
|
array_length++;
|
||
|
input_position++;
|
||
|
}
|
||
|
} else {
|
||
|
codeword_array[array_length] = 102; // Latch B
|
||
|
array_length++;
|
||
|
encoding_mode = 'B';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("D4 "); }
|
||
|
}
|
||
|
|
||
|
/* Step E1 */
|
||
|
if ((!done) && (encoding_mode == 'X')) {
|
||
|
int n = try_c(source, input_position, length);
|
||
|
|
||
|
if (n >= 2) {
|
||
|
/* Empty binary buffer */
|
||
|
for(i = 0; i < (binary_buffer_size + 1); i++) {
|
||
|
lawrencium[i] = binary_buffer % 103;
|
||
|
binary_buffer /= 103;
|
||
|
}
|
||
|
|
||
|
for(i = 0; i < (binary_buffer_size + 1); i++) {
|
||
|
codeword_array[array_length] = lawrencium[binary_buffer_size - i];
|
||
|
array_length++;
|
||
|
}
|
||
|
binary_buffer = 0;
|
||
|
binary_buffer_size = 0;
|
||
|
|
||
|
if (n <= 7) {
|
||
|
codeword_array[array_length] = 101 + n; // Interrupt for nx Shift C
|
||
|
array_length++;
|
||
|
for(i = 0; i < n; i++) {
|
||
|
codeword_array[array_length] = ((source[input_position] - '0') * 10) + (source[input_position + 1] - '0');
|
||
|
array_length++;
|
||
|
input_position += 2;
|
||
|
}
|
||
|
} else {
|
||
|
codeword_array[array_length] = 111; // Terminate with Latch to C
|
||
|
array_length++;
|
||
|
encoding_mode = 'C';
|
||
|
}
|
||
|
done = 1;
|
||
|
if (debug) { printf("E1 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step E2 */
|
||
|
/* Section 5.2.1.1 para D.2.i states:
|
||
|
* "Groups of six codewords, each valued between 0 and 102, are radix converted from
|
||
|
* base 103 into five base 259 values..."
|
||
|
*/
|
||
|
if ((!done) && (encoding_mode == 'X')) {
|
||
|
if(binary(source, input_position, length)
|
||
|
|| binary(source, input_position + 1, length)
|
||
|
|| binary(source, input_position + 2, length)
|
||
|
|| binary(source, input_position + 3, length)) {
|
||
|
binary_buffer *= 259;
|
||
|
binary_buffer += source[input_position];
|
||
|
binary_buffer_size++;
|
||
|
|
||
|
if (binary_buffer_size == 5) {
|
||
|
for(i = 0; i < 6; i++) {
|
||
|
lawrencium[i] = binary_buffer % 103;
|
||
|
binary_buffer /= 103;
|
||
|
}
|
||
|
|
||
|
for(i = 0; i < 6; i++) {
|
||
|
codeword_array[array_length] = lawrencium[5 - i];
|
||
|
array_length++;
|
||
|
}
|
||
|
binary_buffer = 0;
|
||
|
binary_buffer_size = 0;
|
||
|
}
|
||
|
input_position++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("E2 "); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Step E3 */
|
||
|
if ((!done) && (encoding_mode == 'X')) {
|
||
|
/* Empty binary buffer */
|
||
|
for(i = 0; i < (binary_buffer_size + 1); i++) {
|
||
|
lawrencium[i] = binary_buffer % 103;
|
||
|
binary_buffer /= 103;
|
||
|
}
|
||
|
|
||
|
for(i = 0; i < (binary_buffer_size + 1); i++) {
|
||
|
codeword_array[array_length] = lawrencium[binary_buffer_size - i];
|
||
|
array_length++;
|
||
|
}
|
||
|
binary_buffer = 0;
|
||
|
binary_buffer_size = 0;
|
||
|
|
||
|
if (ahead_a(source, input_position, length) > ahead_b(source, input_position, length)) {
|
||
|
codeword_array[array_length] = 109; // Terminate with Latch to A
|
||
|
encoding_mode = 'A';
|
||
|
} else {
|
||
|
codeword_array[array_length] = 110; // Terminate with Latch to B
|
||
|
encoding_mode = 'B';
|
||
|
}
|
||
|
array_length++;
|
||
|
done = 1;
|
||
|
if (debug) { printf("E3 "); }
|
||
|
}
|
||
|
} while (input_position < length);
|
||
|
|
||
|
if (debug) { printf("\n\n"); }
|
||
|
|
||
|
printf("ip = %d, len = %d\n", input_position, length);
|
||
|
|
||
|
ecc_length = 3 + (array_length / 2);
|
||
|
|
||
|
printf("Codeword length = %d, ECC length = %d\n", array_length, ecc_length);
|
||
|
printf("Data codewords: ");
|
||
|
for (i = 0; i < array_length; i++) {
|
||
|
printf(" %d ", codeword_array[i]);
|
||
|
}
|
||
|
printf("\n");
|
||
|
|
||
|
printf("Dot code, coming soon!\n");
|
||
|
|
||
|
return ZINT_ERROR_INVALID_OPTION;
|
||
|
}
|