zint/backend/dm200.c

961 lines
24 KiB
C
Raw Normal View History

2008-07-14 09:15:55 +12:00
/**
*
* IEC16022 bar code generation
* Adrian Kennard, Andrews & Arnold Ltd
* with help from Cliff Hones on the RS coding
*
* (c) 2004 Adrian Kennard, Andrews & Arnold Ltd
* (c) 2006 Stefan Schmidt <stefan@datenfreihafen.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "reedsol.h"
#include "dm200.h"
static struct ecc200matrix_s {
int H, W;
int FH, FW;
int bytes;
int datablock, rsblock;
} ecc200matrix[] = {
10, 10, 10, 10, 3, 3, 5, //
12, 12, 12, 12, 5, 5, 7, //
8, 18, 8, 18, 5, 5, 7, //
14, 14, 14, 14, 8, 8, 10, //
8, 32, 8, 16, 10, 10, 11, //
16, 16, 16, 16, 12, 12, 12, //
12, 26, 12, 26, 16, 16, 14, //
18, 18, 18, 18, 18, 18, 14, //
20, 20, 20, 20, 22, 22, 18, //
12, 36, 12, 18, 22, 22, 18, //
22, 22, 22, 22, 30, 30, 20, //
16, 36, 16, 18, 32, 32, 24, //
24, 24, 24, 24, 36, 36, 24, //
26, 26, 26, 26, 44, 44, 28, //
16, 48, 16, 24, 49, 49, 28, //
32, 32, 16, 16, 62, 62, 36, //
36, 36, 18, 18, 86, 86, 42, //
40, 40, 20, 20, 114, 114, 48, //
44, 44, 22, 22, 144, 144, 56, //
48, 48, 24, 24, 174, 174, 68, //
52, 52, 26, 26, 204, 102, 42, //
64, 64, 16, 16, 280, 140, 56, //
72, 72, 18, 18, 368, 92, 36, //
80, 80, 20, 20, 456, 114, 48, //
88, 88, 22, 22, 576, 144, 56, //
96, 96, 24, 24, 696, 174, 68, //
104, 104, 26, 26, 816, 136, 56, //
120, 120, 20, 20, 1050, 175, 68, //
132, 132, 22, 22, 1304, 163, 62, //
144, 144, 24, 24, 1558, 156, 62, // 156*4+155*2
0 // terminate
};
// simple checked response malloc
static void *safemalloc(int n)
{
void *p = malloc(n);
if (!p) {
fprintf(stderr, "Malloc(%d) failed\n", n);
exit(1);
}
return p;
}
// Annex M placement alorithm low level
static void ecc200placementbit(int *array, int NR, int NC, int r, int c,
int p, char b)
{
if (r < 0) {
r += NR;
c += 4 - ((NR + 4) % 8);
}
if (c < 0) {
c += NC;
r += 4 - ((NC + 4) % 8);
}
array[r * NC + c] = (p << 3) + b;
}
static void ecc200placementblock(int *array, int NR, int NC, int r,
int c, int p)
{
ecc200placementbit(array, NR, NC, r - 2, c - 2, p, 7);
ecc200placementbit(array, NR, NC, r - 2, c - 1, p, 6);
ecc200placementbit(array, NR, NC, r - 1, c - 2, p, 5);
ecc200placementbit(array, NR, NC, r - 1, c - 1, p, 4);
ecc200placementbit(array, NR, NC, r - 1, c - 0, p, 3);
ecc200placementbit(array, NR, NC, r - 0, c - 2, p, 2);
ecc200placementbit(array, NR, NC, r - 0, c - 1, p, 1);
ecc200placementbit(array, NR, NC, r - 0, c - 0, p, 0);
}
static void ecc200placementcornerA(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 1, 1, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 2, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 2);
ecc200placementbit(array, NR, NC, 2, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 3, NC - 1, p, 0);
}
static void ecc200placementcornerB(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 3, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 2, 0, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 4, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 3, p, 3);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 2);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 0);
}
static void ecc200placementcornerC(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 3, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 2, 0, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 2);
ecc200placementbit(array, NR, NC, 2, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 3, NC - 1, p, 0);
}
static void ecc200placementcornerD(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 1, NC - 1, p, 6);
ecc200placementbit(array, NR, NC, 0, NC - 3, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 3, p, 2);
ecc200placementbit(array, NR, NC, 1, NC - 2, p, 1);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 0);
}
// Annex M placement alorithm main function
static void ecc200placement(int *array, int NR, int NC)
{
int r, c, p;
// invalidate
for (r = 0; r < NR; r++)
for (c = 0; c < NC; c++)
array[r * NC + c] = 0;
// start
p = 1;
r = 4;
c = 0;
do {
// check corner
if (r == NR && !c)
ecc200placementcornerA(array, NR, NC, p++);
if (r == NR - 2 && !c && NC % 4)
ecc200placementcornerB(array, NR, NC, p++);
if (r == NR - 2 && !c && (NC % 8) == 4)
ecc200placementcornerC(array, NR, NC, p++);
if (r == NR + 4 && c == 2 && !(NC % 8))
ecc200placementcornerD(array, NR, NC, p++);
// up/right
do {
if (r < NR && c >= 0 && !array[r * NC + c])
ecc200placementblock(array, NR, NC, r, c, p++);
r -= 2;
c += 2;
}
while (r >= 0 && c < NC);
r++;
c += 3;
// down/left
do {
if (r >= 0 && c < NC && !array[r * NC + c])
ecc200placementblock(array, NR, NC, r, c, p++);
r += 2;
c -= 2;
}
while (r < NR && c >= 0);
r += 3;
c++;
}
while (r < NR || c < NC);
// unfilled corner
if (!array[NR * NC - 1])
array[NR * NC - 1] = array[NR * NC - NC - 2] = 1;
}
// calculate and append ecc code, and if necessary interleave
static void ecc200(unsigned char *binary, int bytes, int datablock, int rsblock)
{
int blocks = (bytes + 2) / datablock, b;
rs_init_gf(0x12d);
rs_init_code(rsblock, 1);
for (b = 0; b < blocks; b++) {
unsigned char buf[256], ecc[256];
int n, p = 0;
for (n = b; n < bytes; n += blocks)
buf[p++] = binary[n];
rs_encode(p, buf, ecc);
p = rsblock - 1; // comes back reversed
for (n = b; n < rsblock * blocks; n += blocks)
binary[bytes + n] = ecc[p--];
}
}
/*
* perform encoding for ecc200, source s len sl, to target t len tl, using
* optional encoding control string e return 1 if OK, 0 if failed. Does all
* necessary padding to tl
*/
char ecc200encode(unsigned char *t, int tl, unsigned char *s, int sl,
char *encoding, int *lenp)
{
char enc = 'a'; // start in ASCII encoding mode
int tp = 0, sp = 0;
if (strlen(encoding) < sl) {
fprintf(stderr, "Encoding string too short\n");
return 0;
}
// do the encoding
while (sp < sl && tp < tl) {
char newenc = enc; // suggest new encoding
if (tl - tp <= 1 && (enc == 'c' || enc == 't') || tl - tp <= 2
&& enc == 'x')
enc = 'a'; // auto revert to ASCII
newenc = tolower(encoding[sp]);
switch (newenc) { // encode character
case 'c': // C40
case 't': // Text
case 'x': // X12
{
char out[6], p = 0;
const char *e,
*s2 = "!\"#$%&'()*+,-./:;<=>?@[\\]_",
*s3 = 0;
if (newenc == 'c') {
e = " 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
s3 = "`abcdefghijklmnopqrstuvwxyz{|}~\177";
}
if (newenc == 't') {
e = " 0123456789abcdefghijklmnopqrstuvwxyz";
s3 = "`ABCDEFGHIJKLMNOPQRSTUVWXYZ{|}~\177";
}
if (newenc == 'x')
e = " 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ\r*>";
do {
unsigned char c = s[sp++];
char *w;
if (c & 0x80) {
if (newenc == 'x') {
fprintf(stderr,
"Cannot encode char 0x%02X in X12\n",
c);
return 0;
}
c &= 0x7f;
out[p++] = 1;
out[p++] = 30;
}
w = strchr(e, c);
if (w)
out[p++] = ((w - e) + 3) % 40;
else {
if (newenc == 'x') {
fprintf(stderr,
"Cannot encode char 0x%02X in X12\n",
c);
return 0;
}
if (c < 32) { // shift 1
out[p++] = 0;
out[p++] = c;
} else {
w = strchr(s2, c);
if (w) { // shift 2
out[p++] = 1;
out[p++] =
(w - s2);
} else {
w = strchr(s3,
c);
if (w) {
out[p++]
= 2;
out[p++]
=
(w -
s3);
} else {
fprintf
(stderr,
"Could not encode 0x%02X, should \
not happen\n", c);
return
0;
}
}
}
}
2008-09-03 07:39:07 +12:00
if (p == 2 && tp + 2 <= tl && sp == sl)
2008-07-14 09:15:55 +12:00
out[p++] = 0; // shift 1 pad at end
while (p >= 3) {
int v =
out[0] * 1600 +
out[1] * 40 + out[2] + 1;
if (enc != newenc) {
if (enc == 'c'
|| enc == 't'
|| enc == 'x')
t[tp++] = 254; // escape C40/text/X12
else if (enc == 'x')
t[tp++] = 0x7C; // escape EDIFACT
if (newenc == 'c')
t[tp++] = 230;
if (newenc == 't')
t[tp++] = 239;
if (newenc == 'x')
t[tp++] = 238;
enc = newenc;
}
t[tp++] = (v >> 8);
t[tp++] = (v & 0xFF);
p -= 3;
out[0] = out[3];
out[1] = out[4];
out[2] = out[5];
}
}
while (p && sp < sl);
}
break;
case 'e': // EDIFACT
{
unsigned char out[4], p = 0;
if (enc != newenc) { // can only be from C40/Text/X12
t[tp++] = 254;
enc = 'a';
}
while (sp < sl && tolower(encoding[sp]) == 'e'
&& p < 4)
out[p++] = s[sp++];
if (p < 4) {
out[p++] = 0x1F;
enc = 'a';
} // termination
t[tp] = ((s[0] & 0x3F) << 2);
t[tp++] |= ((s[1] & 0x30) >> 4);
t[tp] = ((s[1] & 0x0F) << 4);
if (p == 2)
tp++;
else {
t[tp++] |= ((s[2] & 0x3C) >> 2);
t[tp] = ((s[2] & 0x03) << 6);
t[tp++] |= (s[3] & 0x3F);
}
}
break;
case 'a': // ASCII
if (enc != newenc) {
if (enc == 'c' || enc == 't' || enc == 'x')
t[tp++] = 254; // escape C40/text/X12
else
t[tp++] = 0x7C; // escape EDIFACT
}
enc = 'a';
if (sl - sp >= 2 && isdigit(s[sp])
&& isdigit(s[sp + 1])) {
t[tp++] =
(s[sp] - '0') * 10 + s[sp + 1] - '0' + 130;
sp += 2;
} else if (s[sp] > 127) {
t[tp++] = 235;
t[tp++] = s[sp++] - 127;
} else
t[tp++] = s[sp++] + 1;
break;
case 'b': // Binary
{
int l = 0; // how much to encode
if (encoding) {
int p;
for (p = sp;
p < sl
&& tolower(encoding[p]) == 'b';
p++)
l++;
}
t[tp++] = 231; // base256
if (l < 250)
t[tp++] = l;
else {
t[tp++] = 249 + (l / 250);
t[tp++] = (l % 250);
}
while (l-- && tp < tl) {
t[tp] = s[sp++] + (((tp + 1) * 149) % 255) + 1; // see annex H
tp++;
}
enc = 'a'; // reverse to ASCII at end
}
break;
default:
fprintf(stderr, "Unknown encoding %c\n", newenc);
return 0; // failed
}
}
if (lenp)
*lenp = tp;
if (tp < tl && enc != 'a') {
if (enc == 'c' || enc == 'x' || enc == 't')
t[tp++] = 254; // escape X12/C40/Text
else
t[tp++] = 0x7C; // escape EDIFACT
}
if (tp < tl)
t[tp++] = 129; // pad
while (tp < tl) { // more padding
int v = 129 + (((tp + 1) * 149) % 253) + 1; // see Annex H
if (v > 254)
v -= 254;
t[tp++] = v;
}
if (tp > tl || sp < sl)
return 0; // did not fit
/*
* for (tp = 0; tp < tl; tp++) fprintf (stderr, "%02X ", t[tp]); \
* fprintf (stderr, "\n");
*/
return 1; // OK
}
// Auto encoding format functions
static char encchr[] = "ACTXEB";
enum {
E_ASCII,
E_C40,
E_TEXT,
E_X12,
E_EDIFACT,
E_BINARY,
E_MAX
};
unsigned char switchcost[E_MAX][E_MAX] = {
0, 1, 1, 1, 1, 2, // From E_ASCII
1, 0, 2, 2, 2, 3, // From E_C40
1, 2, 0, 2, 2, 3, // From E_TEXT
1, 2, 2, 0, 2, 3, // From E_X12
1, 2, 2, 2, 0, 3, // From E_EDIFACT
0, 1, 1, 1, 1, 0, // From E_BINARY
};
/*
* Creates a encoding list (malloc)
* returns encoding string
* if lenp not null, target len stored
* if error, null returned
* if exact specified, then assumes shortcuts applicable for exact fit
* in target
* 1. No unlatch to return to ASCII for last encoded byte after C40 or
* Text or X12
* 2. No unlatch to return to ASCII for last 1 or 2 encoded bytes after
* EDIFACT
* 3. Final C40 or text encoding exactly in last 2 bytes can have a shift
* 0 to pad to make a tripple
* Only use the encoding from an exact request if the len matches the target,
* otherwise free the result and try again with exact=0
*/
static char *encmake(int l, unsigned char *s, int *lenp, char exact)
{
char *encoding = 0;
int p = l;
char e;
struct {
// number of bytes of source that can be encoded in a row at this point
// using this encoding mode
short s;
// number of bytes of target generated encoding from this point to end if
// already in this encoding mode
short t;
} enc[MAXBARCODE][E_MAX];
memset(&enc, 0, sizeof(enc));
if (!l)
return ""; // no length
if (l > MAXBARCODE)
return 0; // not valid
while (p--) {
char b = 0, sub;
int sl, tl, bl, t;
// consider each encoding from this point
// ASCII
sl = tl = 1;
if (isdigit(s[p]) && p + 1 < l && isdigit(s[p + 1]))
sl = 2; // double digit
else if (s[p] & 0x80)
tl = 2; // high shifted
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t && ((t = enc[p + sl][e].t +
switchcost[E_ASCII]
[e]) < bl || !bl)) {
bl = t;
b = e;
}
enc[p][E_ASCII].t = tl + bl;
enc[p][E_ASCII].s = sl;
if (bl && b == E_ASCII)
enc[p][b].s += enc[p + sl][b].s;
// C40
sub = tl = sl = 0;
do {
unsigned char c = s[p + sl++];
if (c & 0x80) { // shift + upper
sub += 2;
c &= 0x7F;
}
if (c != ' ' && !isdigit(c) && !isupper(c))
sub++; // shift
sub++;
while (sub >= 3) {
sub -= 3;
tl += 2;
}
} while (sub && p + sl < l);
if (exact && sub == 2 && p + sl == l) {
// special case, can encode last block with shift 0 at end (Is this
// valid when not end of target buffer?)
sub = 0;
tl += 2;
}
if (!sub) { // can encode C40
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t
&&
((t =
enc[p + sl][e].t +
switchcost[E_C40][e]) < bl
|| !bl)) {
bl = t;
b = e;
}
if (exact && enc[p + sl][E_ASCII].t == 1 && 1 < bl) {
// special case, switch to ASCII for last bytes
bl = 1;
b = E_ASCII;
}
enc[p][E_C40].t = tl + bl;
enc[p][E_C40].s = sl;
if (bl && b == E_C40)
enc[p][b].s += enc[p + sl][b].s;
}
// Text
sub = tl = sl = 0;
do {
unsigned char c = s[p + sl++];
if (c & 0x80) { // shift + upper
sub += 2;
c &= 0x7F;
}
if (c != ' ' && !isdigit(c) && !islower(c))
sub++; // shift
sub++;
while (sub >= 3) {
sub -= 3;
tl += 2;
}
} while (sub && p + sl < l);
if (exact && sub == 2 && p + sl == l) {
// special case, can encode last block with shift 0 at end (Is this
// valid when not end of target buffer?)
sub = 0;
tl += 2;
}
if (!sub && sl) { // can encode Text
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t
&&
((t =
enc[p + sl][e].t +
switchcost[E_TEXT][e]) < bl
|| !bl)) {
bl = t;
b = e;
}
if (exact && enc[p + sl][E_ASCII].t == 1 && 1 < bl) { // special case, switch to ASCII for last bytes
bl = 1;
b = E_ASCII;
}
enc[p][E_TEXT].t = tl + bl;
enc[p][E_TEXT].s = sl;
if (bl && b == E_TEXT)
enc[p][b].s += enc[p + sl][b].s;
}
// X12
sub = tl = sl = 0;
do {
unsigned char c = s[p + sl++];
if (c != 13 && c != '*' && c != '>' && c != ' '
&& !isdigit(c) && !isupper(c)) {
sl = 0;
break;
}
sub++;
while (sub >= 3) {
sub -= 3;
tl += 2;
}
} while (sub && p + sl < l);
if (!sub && sl) { // can encode X12
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t
&&
((t =
enc[p + sl][e].t +
switchcost[E_X12][e]) < bl
|| !bl)) {
bl = t;
b = e;
}
if (exact && enc[p + sl][E_ASCII].t == 1 && 1 < bl) {
// special case, switch to ASCII for last bytes
bl = 1;
b = E_ASCII;
}
enc[p][E_X12].t = tl + bl;
enc[p][E_X12].s = sl;
if (bl && b == E_X12)
enc[p][b].s += enc[p + sl][b].s;
}
// EDIFACT
sl = bl = 0;
if (s[p + 0] >= 32 && s[p + 0] <= 94) { // can encode 1
char bs = 0;
if (p + 1 == l && (!bl || bl < 2)) {
bl = 2;
bs = 1;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT && enc[p + 1][e].t
&&
((t =
2 + enc[p + 1][e].t +
switchcost[E_ASCII][e])
< bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 1;
bl = t;
b = e;
}
if (p + 1 < l && s[p + 1] >= 32 && s[p + 1] <= 94) { // can encode 2
if (p + 2 == l && (!bl || bl < 2)) {
bl = 3;
bs = 2;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT
&& enc[p + 2][e].t
&&
((t =
3 + enc[p + 2][e].t +
switchcost[E_ASCII][e])
< bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 2;
bl = t;
b = e;
}
if (p + 2 < l && s[p + 2] >= 32 && s[p + 2] <= 94) { // can encode 3
if (p + 3 == l && (!bl || bl < 3)) {
bl = 3;
bs = 3;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT
&& enc[p + 3][e].t
&&
((t =
3 + enc[p +
3][e].t +
switchcost
[E_ASCII][e])
< bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 3;
bl = t;
b = e;
}
if (p + 4 < l && s[p + 3] >= 32 && s[p + 3] <= 94) { // can encode 4
if (p + 4 == l
&& (!bl || bl < 3)) {
bl = 3;
bs = 4;
} else {
for (e = 0; e < E_MAX;
e++)
if (enc[p + 4]
[e].t
&&
((t =
3 +
enc[p +
4][e].
t +
switchcost
[E_EDIFACT]
[e]) < bl
|| !bl)) {
bs = 4;
bl = t;
b = e;
}
if (exact
&& enc[p +
4][E_ASCII].t
&& enc[p +
4][E_ASCII].
t <= 2
&& (t =
3 + enc[p +
4]
[E_ASCII].t) <
bl) {
// special case, switch to ASCII for last 1 ot two bytes
bs = 4;
bl = t;
b = E_ASCII;
}
}
}
}
}
enc[p][E_EDIFACT].t = bl;
enc[p][E_EDIFACT].s = bs;
if (bl && b == E_EDIFACT)
enc[p][b].s += enc[p + bs][b].s;
}
// Binary
bl = 0;
for (e = 0; e < E_MAX; e++)
if (enc[p + 1][e].t
&&
((t =
enc[p + 1][e].t + switchcost[E_BINARY][e] +
((e == E_BINARY
&& enc[p + 1][e].t == 249) ? 1 : 0))
< bl || !bl)) {
bl = t;
b = e;
}
enc[p][E_BINARY].t = 1 + bl;
enc[p][E_BINARY].s = 1;
if (bl && b == E_BINARY)
enc[p][b].s += enc[p + 1][b].s;
/*
* fprintf (stderr, "%d:", p); for (e = 0; e < E_MAX; e++) fprintf \
* (stderr, " %c*%d/%d", encchr[e], enc[p][e].s, enc[p][e].t); \
* fprintf (stderr, "\n");
*/
}
encoding = safemalloc(l + 1);
p = 0;
{
char cur = E_ASCII; // starts ASCII
while (p < l) {
int t, m = 0;
char b = 0;
for (e = 0; e < E_MAX; e++)
if (enc[p][e].t
&& ((t = enc[p][e].t + switchcost[cur][e]) <
m || t == m && e == cur || !m)) {
b = e;
m = t;
}
cur = b;
m = enc[p][b].s;
if (!p && lenp)
*lenp = enc[p][b].t;
while (p < l && m--)
encoding[p++] = encchr[b];
}
}
encoding[p] = 0;
return encoding;
}
/*
* Main encoding function
* Returns the grid (malloced) containing the matrix. L corner at 0,0.
* Takes suggested size in *Wptr, *Hptr, or 0,0. Fills in actual size.
* Takes barcodelen and barcode to be encoded
* Note, if *encodingptr is null, then fills with auto picked (malloced)
* encoding
* If lenp not null, then the length of encoded data before any final
* unlatch or pad is stored
* If maxp not null, then the max storage of this size code is stored
* If eccp not null, then the number of ecc bytes used in this size is
* stored
* Returns 0 on error (writes to stderr with details).
*/
unsigned char *iec16022ecc200(int *Wptr, int *Hptr, char **encodingptr,
int barcodelen, unsigned char *barcode,
int *lenp, int *maxp, int *eccp)
{
unsigned char binary[3000]; // encoded raw data and ecc to place in barcode
int W = 0, H = 0;
char *encoding = 0;
unsigned char *grid = 0;
struct ecc200matrix_s *matrix;
memset(binary, 0, sizeof(binary));
if (encodingptr)
encoding = *encodingptr;
if (Wptr)
W = *Wptr;
if (Hptr)
H = *Hptr;
// encoding
if (W) { // known size
for (matrix = ecc200matrix; matrix->W && (matrix->W != W ||
matrix->H != H);
matrix++) ;
if (!matrix->W) {
fprintf(stderr, "Invalid size %dx%d\n", W, H);
return 0;
}
if (!encoding) {
int len;
char *e = encmake(barcodelen, barcode, &len, 1);
if (e && len != matrix->bytes) { // try not an exact fit
free(e);
e = encmake(barcodelen, barcode, &len, 0);
if (len > matrix->bytes) {
fprintf(stderr,
"Cannot make barcode fit %dx%d\n",
W, H);
return 0;
}
}
encoding = e;
}
} else {
// find a suitable encoding
if (encoding == NULL)
encoding = encmake(barcodelen, barcode, NULL, 1);
if (encoding) { // find one that fits chosen encoding
for (matrix = ecc200matrix; matrix->W; matrix++)
if (ecc200encode
(binary, matrix->bytes, barcode, barcodelen,
encoding, 0))
break;
} else {
int len;
char *e;
e = encmake(barcodelen, barcode, &len, 1);
for (matrix = ecc200matrix;
matrix->W && matrix->bytes != len; matrix++) ;
if (e && !matrix->W) { // try for non exact fit
free(e);
e = encmake(barcodelen, barcode, &len, 0);
for (matrix = ecc200matrix;
matrix->W && matrix->bytes < len;
matrix++) ;
}
encoding = e;
}
if (!matrix->W) {
fprintf(stderr,
"Cannot find suitable size, barcode too long\n");
return 0;
}
W = matrix->W;
H = matrix->H;
}
if (!ecc200encode(binary, matrix->bytes, barcode, barcodelen,
encoding, lenp)) {
fprintf(stderr, "Barcode too long for %dx%d\n", W, H);
return 0;
}
// ecc code
ecc200(binary, matrix->bytes, matrix->datablock, matrix->rsblock);
{ // placement
int x, y, NC, NR, *places;
NC = W - 2 * (W / matrix->FW);
NR = H - 2 * (H / matrix->FH);
places = safemalloc(NC * NR * sizeof(int));
ecc200placement(places, NR, NC);
grid = safemalloc(W * H);
memset(grid, 0, W * H);
for (y = 0; y < H; y += matrix->FH) {
for (x = 0; x < W; x++)
grid[y * W + x] = 1;
for (x = 0; x < W; x += 2)
grid[(y + matrix->FH - 1) * W + x] = 1;
}
for (x = 0; x < W; x += matrix->FW) {
for (y = 0; y < H; y++)
grid[y * W + x] = 1;
for (y = 0; y < H; y += 2)
grid[y * W + x + matrix->FW - 1] = 1;
}
for (y = 0; y < NR; y++) {
for (x = 0; x < NC; x++) {
int v = places[(NR - y - 1) * NC + x];
//fprintf (stderr, "%4d", v);
if (v == 1 || v > 7
&& (binary[(v >> 3) - 1] & (1 << (v & 7))))
grid[(1 + y +
2 * (y / (matrix->FH - 2))) * W +
1 + x +
2 * (x / (matrix->FW - 2))] = 1;
}
//fprintf (stderr, "\n");
}
free(places);
}
if (Wptr)
*Wptr = W;
if (Hptr)
*Hptr = H;
if (encodingptr)
*encodingptr = encoding;
if (maxp)
*maxp = matrix->bytes;
if (eccp)
*eccp =
(matrix->bytes + 2) / matrix->datablock * matrix->rsblock;
return grid;
}