Zint Barcode Generator and Zint Barcode Studio User Manual

Version 2.10.0.9

May 2022

RIRI

Contents

1. Introduction
L1Glossary

2. Installing Zint
21 LINUX . . e e e
22 Microsoft Windows L e e e
23 ApplemacOS
24ZintTcl Backend e e e

3. Using Zint Barcode Studio
31Main Windowand DataTab
32 Composite GroupboxX
3.3 Additional ECI/Data Segments Groupbox
3.4 Symbology-specificTab o
35AppearanceTab
36ColourDialog
37DataDialog
38Sequence Dialog
39ExportDialog
310CLIEquivalent Dialog

4. Using the Command Line

41InputtingData
42 DirectingOutput
4.3 Selecting Barcode Type
4.4 Adjusting Height L
4.5 Adjusting Whitespace
4.6 Adding Boundary Barsand Boxes Lo oo oo
47Using Colour
48 Rotating the Symbol
49 Adjusting Image Size
49.1Scaling Example
49.2MaxiCode Raster Scaling
410InputModes
4.10.1 Unicode, Data,and GSI1 Modes i i i i e e
4102 InputModesand ECI
4.10.2.1 Input Modes and ECI Example1

4.10.2.2 Input Modes and ECI Example2

4.10.2.3 Input Modes and ECI Example3

411 Batch Processing
412 DirectOutput
413 Automatic Filenames
414 Workingwith Dots
415 Multiple Segments
416 Structured Append
417HelpOptions
418 Other OutputOptions

5. Using the API
5.1 Creating and Deleting Symbols o
52 Encodingand SavingtoFile L
5.3 Encoding and Printing FunctionsinDepth
5.4 Buffering Symbols in Memory (raster)
5.5 Buffering Symbols in Memory (vector)
5.6Setting Options
57Handling Errors
5.8 Specifying a Symbology
5.9 Adjusting Other OutputOptions
510 Setting the Input Mode

Q1 G

NN NN

511 MultipleSegments 37

5.12 Verifying Symbology Availability00 oo o 38
5.13 Checking Symbology Capabilities 39
514 Zint Version L e e e e 39
6. Types of Symbology 40
6.1 One-Dimensional Symbols Lo 40
6.1.1Code 11 40
6.12Code20f5 40
6.1.2.1 Standard Code20f5 L 40
6.1.22TATACode20f5 o 40

6.1.23 Industrial Code20of 5 L 41

6.1.2.4 Interleaved Code 2 of 5 (ISO16390), 41
6.1.25Code2of 5DataLogic L. 41

6. 1.26TTF-14 o 41

6.1.2.7 Deutsche Post Leitcode L L o 42

6.1.2.8 Deutsche Post Identcode 42

6.1.3 Universal Product Code (ISO15420) 42
6.1.3.1 UPC Version A o e 42

6.1.32UPC Version E 43

6.1.4 European Article Number (ISO15420) 44
6.1.4.1 EAN-2, EAN-5, EAN-8and EAN-13 44
6.1.42SBN,ISBNandISBN-13 45
6.1.5Plessey 45

6. 151 UKPlessey 45
6.152MSIPlessey e 45
6.1.6Telepen. 46
6.161Telepen Alpha 46
6.1.6.2Telepen Numeric 46

6.1.7C0de 39 46
6.1.7.1 Standard Code 39 (ISO16388) 46
6.1.72Extended Code 39 L e 46
6.1.73C0de93 47

6.1.7.4 PZN (Pharmazentralnummer) 47
6.1.7Z5LOGMARS e 47
6.1.7.6Code 32 48
6.1.77HIBCCode39 48

6.1.7.8 Vehicle Identification Number (VIN) 48

6.1.8 Codabar (EN798) 48

6.1.9 Pharmacode L 49
6.1.10Code 128 L e 49
6.1.10.1 Standard Code 128 (ISO15417) o o o v i ittt 49
6.1.102Code 128 Subset B 49
6.1.10.3GS1-128 49

6.1.104 EAN-14 e e 50

6.1.10.5 NVE-18 (SSCC-18) o s e e e e 50

6.1.10.6 HIBC Code 128 o i e 50
6.1.10.7DPDCodeo 51

6.1.11 GS1 DataBar (ISO24724) e 51
6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated 51

6.1.11.2 GS1 DataBar Limited 51

6.1.11.3 GS1 DataBar Expanded 52

6.1.12 Korea Post Barcode 52
6.1.13Channel Code e 52

6.2 Stacked Symbologies 53
6.2.1 Basic Symbol Stacking 53

6.22 Codablock-F 53
6.23Code 16K (EN12323) o o e e 54
6.24PDF417 (ISO15438) o e 54

6.2.5 Compact PDF417 (ISO 15438) 54
6.2.6 MicroPDF417 (ISO 24728)« . o e e 54

6.2.7 GS1 DataBar Stacked (ISO24724)
6.2.7.1 GS1 DataBar Stacked L
6.2.7.2 GS1 DataBar Stacked Omnidirectional
6.2.7.3 GS1 DataBar Expanded Stacked

6.2.8C0de49

6.3 Composite Symbols (ISO24723)

6.3.1CC-A . .

6.3.2CC-B . . .

6.3.3CC-C . . .

6.4 Two-Track Symbols

6.4.1 Two-Track Pharmacode e

6.42POSTNET o

6.43PLANET o e

6.5 4-State Postal Codes e

6.5.1 Australia Post 4-State Symbols oo o L
6.5.1.1 Customer Barcodes L
6.512Reply Paid Barcode L
6.5.1.3 Routing Barcodeo
6.5.14 Redirect Barcode

6.52Dutch Post KIXCode e

6.5.3 Royal Mail 4-State Customer Code (RM4SCC)

6.5.4 Royal Mail 4-State Mailmark L

6.5.5 USPS Intelligent Mail

6.5.6 Japanese Postal Code

6.6 Two-Dimensional Matrix Symbols o o

6.6.1 Data Matrix (ISO16022) o e

6.62QR Code (ISO18004) o o

6.6.3Micro QR Code (ISO18004) o o o

6.6.4 Rectangular Micro QR Code (rMQR) o

6.6.5 UPNQR (Univerzalnega Plac¢ilnega NalogaQR)

6.6.6 MaxiCode (ISO 16023) o i i e e e

6.6.7 Aztec Code (ISO 24778) o o i i i

6.6.8 Aztec Runes (ISO24778)

6.69CodeOne e

6.6.10 Grid MatrixX e

6.6.11 DotCode

6.6.12 Han Xin Code (ISO20830) i

6.6.13 Ultracode e

6.7 Other Barcode-Like Markings

6.7.1 Facing Identification Mark (FIM)o

6.7.2 Flattermarken e

6.73DAFT Code o

7. Legal and Version Information
ZALicenseo e
72PatentIssues. e e
7.3 Version Information. e
7.4 Sources of Information L e e
7.5 Standards Compliance

A. Character Encoding
AT ASCIIStandard e
A2 Latin Alphabet No. 1 (ISO/IEC 8859-1) i

B. CLI Help

1. Introduction

The Zint project aims to provide a complete cross-platform open source barcode generating solution. The pack-
age currently consists of a Qt based GUI, a CLI command line executable and a library with an API to allow
developers access to the capabilities of Zint. It is hoped that Zint provides a solution which is flexible enough
for professional users while at the same time takes care of as much of the processing as possible to allow easy
translation from input data to barcode image.

The library which forms the main component of the Zint project is currently able to encode data in over 50
barcode symbologies (types of barcode), for each of which it is possible to translate that data from either UTF-
8 (Unicode) or a raw 8-bit data stream. The image can be rendered as either a Portable Network Graphic (PNG)
image, Windows Bitmap (BMP), Graphics Interchange Format (GIF), ZSoft Paintbrush image (PCX), Tagged
Image File Format (TIF), Enhanced Metafile Format (EMF), as Encapsulated PostScript (EPS), or as a Scalable
Vector Graphic (SVG). Many options are available for setting the characteristics of the output image including
the size and colour of the image, the amount of error correction used in the symbol and the orientation of the
image.

1.1 Glossary

Some of the words and phrases used in this document are specific to barcoding, and so a brief explanation is
given to help understanding:

symbol:
A symbol is an image which encodes data according to one of the standards. This encompasses barcodes
(linear symbols) as well as any of the other methods of representing data used in this program.

symbology:
A method of encoding data to create a certain type of symbol.

linear:
A linear or one-dimensional symbol is one which consists of bars and spaces, and is what most people
associate with the term ‘barcode’. Examples include Code 128.

stacked:
A stacked symbol consists of multiple linear symbols placed one above another and which together hold
the message, usually alongside some error correction data. Examples include PDF417.

matrix:
A matrix or two-dimensional symbol is one based on a (usually square) grid of elements called modules.
Examples include Data Matrix, but MaxiCode and DotCode are also considered matrix symbologies.

composite:
A composite symbology is one which is made up of elements which are both linear and stacked. Those
currently supported are made up of a linear ‘' primary ' message above which is printed a stacked compo-
nent based on the PDF417 symbology. These symbols also have a separator which separates the linear
and the stacked components.

X-dimension:
The X-dimension of a symbol is the size (usually the width) of the smallest element. For a linear symbol-
ogy this is the width of the smallest bar. For matrix symbologies it is the width of the smallest module
(usually a square). Barcode widths and heights are expressed in multiples of the X-dimension. Most
linear symbologies can have their height varied whereas most matrix symbologies have a fixed width-to-
height ratio where the height is determined by the width.

GS1 data:
This is a structured way of representing information which consists of ‘chunks’of data, each of which
starts with an Application Identifier (Al). The Al identifies what type of information is being encoded.

Reader Initialisation:
Some symbologies allow a special character to be included which can be detected by the scanning equip-
ment as signifying that the data is used to program or change settings in that equipment. This data is
usually not passed on to the software which handles normal input data. This feature should only be used
if you are familiar with the programming codes relevant to your scanner.

ECI:
The Extended Channel Interpretations (ECI) mechanism allows for multi-language data to be encoded
in symbols which would usually support only Latin-1 (ISO/IEC 8859-1 plus ASCII) characters. This can
be useful, for example, if you need to encode Cyrillic characters, but should be used with caution as not
all scanners support this method.

Two other concepts that are important are raster and vector.

raster:
A low level bitmap representation of an image. BMP, GIF, PCX, PNG and TIF are raster file formats.
vector:
A high level command- or data-based representation of an image. EMF, EPS and SVG are vector file
formats. They require renderers to turn them into bitmaps.

2. Installing Zint

2.1 Linux
The easiest way to configure compilation is to take advantage of the CMake utilities. You will need to install
CMake and libpng-dev first. For instance on apt systems:

sudo apt install git cmake build-essential libpng-dev

If you want to take advantage of Zint Barcode Studio you will also need to have Qt and its component "Desktop
gcc 64-bit" installed, as well as mesa. For details see "README. 1inux" in the project root directory.
Once you have fulfilled these requirements unzip the source code tarball or clone the latest source

git clone https://git.code.sf.net/p/zint/code zint

and follow these steps in the top directory:

mkdir build

cd build

cmake ..

make

sudo make install

The CLI command line program can be accessed by typing

zint [options]

The GUI can be accessed by typing
zint-qt

To test that the installation has been successful a shell script is included in the "frontend" sub-directory. To
run the test type

./test.sh

This should create numerous files in the sub-directory "frontend/test_sh_out" showing the many modes of
operation which are available from Zint.

2.2 Microsoft Windows

For Microsoft Windows, Zint is distributed as a binary executable. Simply download the ZIP file, then right-
click on the ZIP file and "Extract All". A new folder will be created within which are two binary files:

e (tzint.exe - Zint Barcode Studio
e zint.exe - Command Line Interface

For fresh releases you will get a warning message from Microsoft Defender SmartScreen that this is an ‘un-
recognised app’. This happens because Zint is a free and open-source software project with no advertising
and hence no income, meaning we are not able to afford the $664 per year to have the application digitally
signed by Microsoft.

To build Zint on Windows from source, see "win32/README".

2.3 Apple macOS

Zint can be installed using Homebrew. To install Homebrew input the following line into the macOS terminal

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once Homebrew is installed use the following command to install Zint.

brew install zint

2.4 Zint Tcl Backend

The Tcl backend in the "backend_tcl" sub-directory may be built using the provided TEA (Tcl Extension Ar-
chitecture) build on Linux, Windows, macOS and Android. For Windows, an MSVC6 makefile is also available.

3. Using Zint Barcode Studio

Zint Barcode Studio is the graphical user interface for Zint. If you are starting from a command line interface
you can start the GUI by typing

zint-qt

or on Windows

gtzint.exe

See the note in section 2.2 Microsoft Windows about Microsoft Defender SmartScreen.

Below is a brief guide to Zint Barcode Studio.

3.1 Main Window and Data Tab

Zint Barcode Studio 2.10.0.9 (dev) - o x

Your Data Here!

Symbology: | Code 128 (ISO 15417) (and GS1-128 and HIBC) ~
Data = Code 128 | Appearance

Data to Encode

Your Data Here! = || 1234..

Reader Init

Composite Code

Add 2D Component (GS1-128 only)

Parse Escapes Binary Mode

Menu BMP SVG Save As... Quit

Figure 1: Zint Barcode Studio on startup - main window with Data tab

This is the main window of Zint Barcode Studio. The top of the window shows a preview of the barcode which
the current settings would create. These settings can be changed using the controls below. The text box in the
"Data to Encode" groupbox on this first Data tab allows you to enter the data to be encoded. When you are
happy with your settings you can use the "Save As" button to save the resulting image to a file.

The "Symbology" drop-down box gives access to all of the symbologies supported by Zint shown in alphabetical
order. The text box to its right can filter the drop-down to only show matching symbologies. For instance typing
"mail" will only show barcodes in the drop-down whose names contain the word "mail". Each word entered
will match. So typing "mail post" will show barcodes whose names contain "mail" or "post" (or both).

The "BMP" and "SVG" buttons at the bottom will copy the image to the clipboard in BMP format and SVG format
respectively. Further copy-to-clipboard formats are available by clicking the "Menu" button, along with "CLI

Equivalent", "Save As", "Help", "About" and "Quit" options. Most of the options are also available in a
context menu by right-clicking the preview.

Copy as BMP Ctrl+Shift+B
Copy as EMF Ctrl+Shift+E
. Copy as BMP Ctrl+Shift+B
Copy as GIF Ctrl+Shift+G Pyas2 —
s Copy as EMF Ctrl+Shift+E
Copy as PNG Ctrl+Shift+P pyastXd 2
: Copy as GIF Ctrl+Shift+G
Copy as SVG Ctrl+Shift+S =
i Copy as PNG Ctrl+Shift+P
Copy as TIF Ctrl+Shift+T Pyast i
) Copy as SVG Ctrl+Shift+s
¢ CLI Equivalent... Ctrl+Shift+C)
Copy as TIF Ctrl+Shift+T
i3 Save As... Ctrl+s i i
¢! CLI Equivalent... Ctrl+Shift+C
®| Help (online) F1
— &s Save As... Ctrl+S
=% About
Quit ctri+Q

Figure 2: Zint Barcode Studio main menu (left) and context menu (right)

3.2 Composite Groupbox

Symbology: | Code 128 (ISO 15417) (and GS1-128 and HIBC) -

Zint Barcode Studio 2.10.0.9 (dev) - o x

R | [S |t Y o ZFY

(01)12345678901231(15)121212

Data | Code 128 Appearance

Data to Encode

[01]12345678901231[15]121212 . || 1234.

Composite Code

v Add 2D Component (GS1-128 only) Type: Automatic ~
2D Component Data:
[11]901212[99]ABCDE

Parse Escapes Binary Mode GS1() GS1 No Check

Menu BMP SVG Save As... Quit

Figure 3: Zint Barcode Studio encoding GS1 composite data

In the middle of the Data tab is an area for creating composite symbologies which appears when the currently
selected symbology is supported by the composite symbology standard. GS1 data can then be entered with
square brackets used to separate Application Identifier (AI) information from data as shown here. For details,
see 6.3 Composite Symbols (ISO 24723).

3.3 Additional ECI/Data Segments Groupbox

Zint Barcode Studio 2.10.0.9 (dev) - o x

a1y, 9]

Symbology: QR Code (ISO 18004) (and HIBC) v

Data = QRCode Appearance

Data to Encode
Your Data Here! = | | 1234..
ECI: | None -

Additional ECI/Data Segments
1: | 7:1SO 8859-5 Cyrillic * | |Bawi aaHi TyT!
2: | 30: Korean EUC-KR ~ | |0{7|0f 32| 0|7} & LICH

ZE

Parse Escapes Binary Mode GS1() GS1 No Check

Menu BMP SVG Save As... Quit

Figure 4: Zint Barcode Studio encoding multiple segments

For symbologies that support ECIs (Extended Channel Interpretations) the middle of the Data tab is an area
for entering additional data segments with their own ECIs. Up to 4 segments (including the main "Data to
Encode" as segment 0) may be specified. See 4.15 Multiple Segments for details.

10

3.4 Symbology-specific Tab

Zint Barcode Studio 2.10.0.9 (dev) - o x

Symbology: Aztec Code (ISO 24778) (and HIBC)
Data @ AztecCode | Appearance
® Automatic Resizing
Adjust Size To:
Add Minimum Error Correction:
Encoding Mode

e Standard GS1 Data HIBC

Structured Append

Count: Disabled ~

Menu BMP SVG Save As... Quit

Figure 5: Zint Barcode Studio showing Aztec Code options

For a number of symbologies extra options are available to fine-tune the format, appearance and content of the
symbol generated. These are given in a second tab.

Here the method is shown for adjusting the size or error correction level of an Aztec Code symbol, selecting
how its data is to be treated, and setting it as part of a Structured Append sequence of symbols.

11

3.5 Appearance Tab

Zint Barcode Studio 2.10.0.9 (dev) - o x

Your Data Here!

Symbology: Code 128 (1ISO 15417) (and GS1-128 and HIBC) v

Data Code 128 | Appearance

v Automatic Height Colour: Foreground
Background

Border width: 5X = Reset

Border Type: Bind v CMYK (EPS/TIF)

Whitespace: 0X s ox = v Quiet Zones

Printing Scale: 4.00 = Rotate: 0° v

Font Setting: Normal v

v Show Text

= Menu BMP SVG Save As... Quit

Figure 6: Zint Barcode Studio showing Appearance tab options

The Appearance tab can be used to adjust the dimensions and other properties of the symbol. The "Height"
value affects the height of symbologies which do not have a fixed width-to-height ratio, i.e. those other than
matrix symbologies. Boundary bars ("Border Type") can be added and adjusted and the size of the saved

image ("Printing Scale") can be determined.

12

3.6 Colour Dialog

= Set foreground colour X

Basic colors

Pick Screen Color

-1 .,

Hue: |0 |2 Red: 0 =

Sat: 0 T Green: 0 %

Custom colors

val: 0 2| Blue: 0
Alpha channel: | 255 -

Add to Custom Colors HTML: #000000

@ Cancel | Jdok |

Figure 7: The colour picker tool

A colour dialog is used to adjust the colour of the foreground and background of the generated image. In the
Appearance tab click on the "Foreground" or "Background" button respectively. The colours can be reset to
black-on-white using the "Reset" button.

3.7 Data Dialog
= Input Data x
Data
Your Data Here!
[from File...| Clear v OK X Cancel
Figure 8: Entering longer text input
Clicking on the ellipsis "..." button next to the "Data to Encode" text box in the Data tab opens a larger

window which can be used to enter longer strings of text. You can also use this window to load data from a
file.

The dialog is also available for additional ECI/Data segments by clicking the ellipsis button to the right of their
data text boxes.

Note that if your data contains line feeds (LF) then the data will be split into separate lines in the dialog box.
On saving the data back to the main text box any separate lines in the data will be escaped as '\n' and the
"Parse Escapes" checkbox will be set. This only affects line feeds, not carriage returns (CR) or CR+LF pairs,
and behaves the same on both Windows and Unix. (For details on escape sequences, see 4.1 Inputting Data.)

13

3.8 Sequence Dialog

= Sequence Export x
Create Sequence Sequence Data
Start value: |1 = 000001
000002
End Value: 10 = 000003
- 000004
Increment By: | 1 000005
Format: $$555S 000005
000007
Create 000008
000009
000010
From File... Clear Export... X Close

Figure 9: Creating a sequence of barcode symbols

Clicking on the sequence button (labelled "1234..") in the Data tab opens the Sequence Dialog. This allows
you to create multiple barcode images by entering a sequence of data inputs in the right hand panel. Sequences
can also be automatically generated by entering parameters on the left hand side or by importing the data from
a file. Zint will generate a separate barcode image for each line of text in the right hand panel. The format field
determines the format of the automatically generated sequence where characters have the meanings as given
below:

Table : Sequence Format Characters

Character Effect

Insert leading spaces

$ Insert leading zeroes

* Insert leading asterisks

Any other character Interpreted literally

14

3.9 Export Dialog

= Export Barcodes X

Destination Path: |/home/me

File Name Prefix: bcs_

File Name: Same as Data v

File Format: Portable Network Graphic (*.png) v
Export X Close

Export Results:

Figure 10: Setting filenames for an exported sequence of barcode symbols

The Export Dialog invoked by pressing the "Export" button in the Sequence Dialog sets the parameters for
exporting a sequence of barcode images. Here you can set the filename and the output image format. Note that
the symbology, colour and other formatting information are taken from the main window.

3.10 CLI Equivalent Dialog

= CLI Equivalent X

Command Line Equivalent

zint -b 71 -d "Your Data Here!"

Escape Method

® Unix windows

Long Options Only Barcode Name

] Copy X Close

Figure 11: CLI Equivalent Dialog

The "CLI Equivalent" dialog can be invoked from the main menu or the context menu and displays the CLI
command that will reproduce the barcode as currently configured in the GUI Press the "Copy" button to copy
the command to the clipboard, which can then be pasted into the command line.

15

4. Using the Command Line

This section describes how to encode data using the command line frontend program. The examples given are
for the Unix platform, but the same options are available for Windows - just remember to include the executable
file extension if " .EXE" is not in your PATHEXT environment variable, i.e.:

zint.exe -d "This Text"

For compatibility with Windows the examples use double quotes to delimit data, though on Unix single quotes
are generally preferable as they stop the shell from processing any characters such as backslash or dollar. A
single quote itself is dealt with by terminating the single-quoted text, backslashing the single quote, and then
continuing:

zint -d 'Text containing a single quote '\'' in the middle'

Some examples use backslash (\) to continue commands onto the next line. For Windows, use caret (») instead.

Certain options that take values have short names as well as long ones, namely -b (--barcode), -d (--data),
-i(--input), -o (--output) and -w (- -whitesp). For these a space should be used to separate the short name
from its value, to avoid ambiguity. For long names a space or an equals sign may be used. For instance:

zint -d "This Text"
zint --data="This Text"
zint --data "This Text"

The examples use a space separator for short option names, and an equals sign for long option names.

4.1 Inputting Data

The data to encode can be entered at the command line using the -d or - -data option, for example

zint -d "This Text"

This will encode the text "This Text". Zint will use the default symbology, Code 128, and output to the default
file "out.png" in the current directory. Alternatively, if 1ibpng was not present when Zint was built, the default
output file will be "out.gif".

The data input to the Zint CLI is assumed to be encoded in UTF-8 (Unicode) format (Zint will correctly handle
UTF-8 data on Windows). If you are encoding characters beyond the 7-bit ASCII set using a scheme other than
UTF-8 then you will need to set the appropriate input options as shown in 4.10 Input Modes below.

Non-printing characters can be entered on the command line using backslash (\) as an escape character in
combination with the - -esc switch. Permissible sequences are shown in the table below.

Table : Escape Sequences

Escape ASCII

Sequence Equivalent Name Interpretation

\0 0x00 NUL Null character

\E 0x04 EOT End of Transmission

\a 0x07 BEL Bell

\b 0x08 BS Backspace

\t 0x09 HT Horizontal Tab

\n 0x0A LF Line Feed

\v 0x0B VT Vertical Tab

\f 0x0C FF Form Feed

\r 0x0D CR Carriage Return

\e 0x1B ESC Escape

\G 0x1D GS Group Separator

\R Ox1E RS Record Separator

\\ 0x5C \ Backslash

\XNN OxNN Any 8-bit character where NN is hexadecimal
\UNNNN Any 16-bit Unicode BMP! character where NNNN is

hexadecimal

'In Unicode contexts, BMP stands for Basic Multilingual Plane, the plane 0 codeset from U+0000 to U+D7FF and U+E000 to U+FFEF
(i.e. excluding surrogates). Not to be confused with the Windows Bitmap file format BMP!

16

Input data can be read directly from file using the -i or - -input switch as shown below. The input file is
assumed to be UTF-8 formatted unless an alternative mode is selected. This command replaces the use of the
-d switch.

zint -1 somefile.txt

Note that except when batch processing (see 4.11 Batch Processing below), the file should not end with a
newline (LF on Unix, CR+LF on Windows) unless you want the newline to be encoded in the symbol.

4.2 Directing Output
Output can be directed to a file other than the default using the -o or - -output switch. For example:

zint -o here.png -d "This Text"

This draws a Code 128 barcode in the file "here.png". If an Encapsulated PostScript file is needed simply
append the filename with ".eps", and so on for the other supported file types:

zint -o there.eps -d "This Text"

4.3 Selecting Barcode Type

Selecting which type of barcode you wish to produce (i.e. which symbology to use) can be done at the command
line using the -b or - -barcode switch followed by the appropriate integer value or name in the following table.

For example to create a Data Matrix symbol you could use:

zint -b 71 -o datamatrix.png -d "Data to encode"

or

zint -b DATAMATRIX -o datamatrix.png -d "Data to encode"

Names are treated case-insensitively by the CLIL, and the BARCODE_ prefix and any underscores are optional.

Table : Barcode Types (Symbologies)

Numeric

Value Name? Barcode Name

1 BARCODE_CODE11 Code 11

2% BARCODE_C25STANDARD Standard Code 2 of 5

3 BARCODE_C25INTER Interleaved 2 of 5

4 BARCODE_C25IATA Code 2 of 5 TATA

6 BARCODE_C25L0GIC Code 2 of 5 Data Logic

7 BARCODE_C25IND Code 2 of 5 Industrial

8 BARCODE_CODE39 Code 3 of 9 (Code 39)

9 BARCODE_EXCODE39 Extended Code 3 of 9 (Code 39+)

13 BARCODE_EANX EAN (including EAN-8 and EAN-13)

14 BARCODE_EANX_CHK EAN + Check Digit

16* BARCODE_GS1_128 GS1-128 (UCC.EAN-128)

18 BARCODE_CODABAR Codabar

20 BARCODE_CODE128 Code 128 (automatic subset switching)

21 BARCODE_DPLEIT Deutshe Post Leitcode

22 BARCODE_DPIDENT Deutshe Post Identcode

23 BARCODE_CODE16K Code 16K

24 BARCODE_CODE49 Code 49

25 BARCODE_CODE93 Code 93

28 BARCODE_FLAT Flattermarken

29* BARCODE_DBAR_OMN GS1 DataBar Omnidirectional (including GS1 DataBar
Truncated)

30* BARCODE_DBAR_LTD GS1 DataBar Limited

31* BARCODE_DBAR_EXP GS1 DataBar Expanded

32 BARCODE_TELEPEN Telepen Alpha

34 BARCODE_UPCA UPC-A

35 BARCODE_UPCA_CHK UPC-A + Check Digit

17

Numeric

Value Name Barcode Name

37 BARCODE_UPCE UPC-E

38 BARCODE_UPCE_CHK UPC-E + Check Digit

40 BARCODE_POSTNET POSTNET

47 BARCODE_MSI_PLESSEY MSI Plessey

49 BARCODE_FIM FIM

50 BARCODE_LOGMARS LOGMARS

51 BARCODE_PHARMA Pharmacode One-Track

52 BARCODE_PZN PZN

53 BARCODE_PHARMA_TWO Pharmacode Two-Track

55 BARCODE_PDF417 PDF417

56* BARCODE_PDF417COMP Compact PDF417 (Truncated PDF417)
57 BARCODE_MAXICODE MaxiCode

58 BARCODE_QRCODE OR Code

60 BARCODE_CODE128B Code 128 (Subset B)

63 BARCODE_AUSPOST Australia Post Standard Customer

66 BARCODE_AUSREPLY Australia Post Reply Paid

67 BARCODE_AUSROUTE Australia Post Routing

68 BARCODE_AUSDIRECT Australia Post Redirection

69 BARCODE_ISBNX ISBN (EAN-13 with verification stage)
70 BARCODE_RM4SCC Royal Mail 4-State (RM4SCC)

71 BARCODE_DATAMATRIX Data Matrix (ECC200)

72 BARCODE_EAN14 EAN-14

73 BARCODE_VIN Vehicle Identification Number

74 BARCODE_CODABLOCKF Codablock-F

75 BARCODE_NVE18 NVE-18 (SSCC-18)

76 BARCODE_JAPANPOST Japanese Postal Code

77 BARCODE_KOREAPOST Korea Post

79* BARCODE_DBAR_STK GS1 DataBar Stacked

80* BARCODE_DBAR_OMNSTK GS1 DataBar Stacked Omnidirectional
81* BARCODE_DBAR_EXPSTK GS1 DataBar Expanded Stacked

82 BARCODE_PLANET PLANET

84 BARCODE_MICROPDF417 MicroPDF417

85* BARCODE_USPS_IMAIL USPS Intelligent Mail (OneCode)

86 BARCODE_PLESSEY UK Plessey

87 BARCODE_TELEPEN_NUM Telepen Numeric

89 BARCODE_ITF14 ITF-14

90 BARCODE_KIX Dutch Post KIX Code

92 BARCODE_AZTEC Aztec Code

93 BARCODE_DAFT DAFT Code

96 BARCODE_DPD DPD Code

97 BARCODE_MICROQR Micro QR Code

98 BARCODE_HIBC_128 HIBC Code 128

99 BARCODE_HIBC_39 HIBC Code 39

102 BARCODE_HIBC_DM HIBC Data Matrix ECC200

104 BARCODE_HIBC_QR HIBC QR Code

106 BARCODE_HIBC_PDF HIBC PDF417

108 BARCODE_HIBC_MICPDF HIBC MicroPDF417

110 BARCODE_HIBC_BLOCKF HIBC Codablock-F

112 BARCODE_HIBC_AZTEC HIBC Aztec Code

115 BARCODE_DOTCODE DotCode

116 BARCODE_HANXIN Han Xin (Chinese Sensible) Code

121 BARCODE_MAILMARK Royal Mail 4-state Mailmark

128 BARCODE_AZRUNE Aztec Runes

129 BARCODE_CODE32 Code 32

130 BARCODE_EANX_CC Composite Symbol with EAN linear component
131* BARCODE_GS1_128_CC Composite Symbol with G51-128 linear component
132* BARCODE_DBAR_OMN_CC Composite Symbol with GS1 DataBar Omnidirectional

linear component

18

Numeric

Value Name Barcode Name

133* BARCODE_DBAR_LTD_CC Composite Symbol with GS1 DataBar Limited linear
component

134* BARCODE_DBAR_EXP_CC Composite Symbol with GS1 DataBar Expanded linear
component

135 BARCODE_UPCA_CC Composite Symbol with UPC-A linear component

136 BARCODE_UPCE_CC Composite Symbol with UPC-E linear component

137* BARCODE_DBAR_STK_CC Composite Symbol with GS1 DataBar Stacked component

138* BARCODE_DBAR_OMNSTK_CC Composite Symbol with GS1 DataBar Stacked
Omnidirectional component

139* BARCODE_DBAR_EXPSTK_CC Composite Symbol with GS1 DataBar Expanded Stacked
component

140 BARCODE_CHANNEL Channel Code

141 BARCODE_CODEONE Code One

142 BARCODE_GRIDMATRIX Grid Matrix

143 BARCODE_UPNQR UPNQR (Univerzalnega Placilnega Naloga QR)

144 BARCODE_ULTRA Ultracode

145 BARCODE_RMQR Rectangular Micro QR Code (rMQR)

4.4 Adjusting Height

The height of a symbol (except those with a fixed width-to-height ratio) can be adjusted using the - -height
switch. For example:

zint --height=100 -d "This Text"

This specifies a symbol height of 100 times the X-dimension of the symbol.

The default height of most linear barcodes is 50X, but this can be changed for barcodes whose specifications
give a standard height by using the switch - -compliantheight. For instance

zint -b LOGMARS -d "This Text" --compliantheight

will produce a barcode of height 45.455X instead of the normal default of 50X. The flag also causes Zint to return
a warning if a non-compliant height is given:

zint -b LOGMARS -d "This Text" --compliantheight --height=6.2
Warning 247: Height not compliant with standards

Another switch is - -heightperrow, which can be useful for symbologies that have a variable number of linear
rows, namely Codablock-F, Code 16K, Code 49, GS1 DataBar Expanded Stacked, MicroPDF417 and PDF417,
as it changes the treatment of the height value from overall height to per-row height, allowing you to specify a
consistent height for each linear row without having to know how many there are. For instance

zint -b PDF417 -d "This Text" --height=4 --heightperrow
Figure 12: zint -b PDF417 -d "This Text" --height=4 --heightperrow

will produce a barcode of height 32X, with each of the 8 rows 4X high.

4.5 Adjusting Whitespace

The amount of horizontal whitespace to the left and right of the generated barcode can be altered using the -w
or - -whitesp switch. For example:

2The symbologies marked with an asterisk (*) in the above table used different names in Zint before version 2.9.0. For example, symbol-
ogy 29 used the name BARCODE_RSS14. These names are now deprecated but are still recognised by Zint and will continue to be supported
in future versions.

19

zint -w 10 -d "This Text"

This specifies a whitespace width of 10 times the X-dimension of the symbol both to the left and to the right of
the barcode.

The amount of vertical whitespace above and below the barcode can be altered using the - -vwhitesp switch.
For example for 3 times the X-dimension:

zint --vwhitesp=3 -d "This Text"

Note that the whitespace at the bottom appears below the text, if any.

Horizontal and vertical whitespace can of course be used together:
zint -b DATAMATRIX --whitesp=1 --vwhitesp=1 -d "This Text"

A --quietzones option is also available which adds quiet zones compliant with the symbology 's specification.
This is in addition to any whitespace specified with the - -whitesp or - -vwhitesp switches.

Note that Codablock-F, Code 16K, Code 49, ITF-14, EAN-13, EAN-8, EAN-5, EAN-2, ISBN, UPC-A and UPC-E
have compliant quiet zones added by default. This can be disabled with the option --noquietzones.

4.6 Adding Boundary Bars and Boxes

Zint allows the symbol to be bound with 'boundary bars’ (also known as ‘bearer bars’) using the option - -
bind. These bars help to prevent misreading of the symbol by corrupting a scan if the scanning beam strays
off the top or bottom of the symbol. Zint can also put a border right around the symbol and its horizontal
whitespace with the --box option.

The width of the boundary or box must be specified using the - -border switch. For example:
zint --box --border=10 -w 10 -d "This Text"

This Text

Figure 13: zint --border=10 --box -d "This Text" -w 10

gives a box with a width 10 times the X-dimension of the symbol. Note that when specifying a box, horizontal
whitespace is usually required in order to create a quiet zone between the barcode and the sides of the box.

For linear symbols, horizontal boundary bars appear tight against the barcode, inside any vertical whitespace
(or text). For matrix symbols, however, where they are decorative rather than functional, boundary bars appear
outside any whitespace.

Figure 14: zint -b QRCODE --border=1 --box -d "This Text" --quietzones

Codablock-F, Code 16K and Code 49 always have boundary bars, and default to particular horizontal whites-
pace values. Special considerations apply to ITF-14 - see 6.1.2.6 ITF-14 for that symbology.

20

4.7 Using Colour

The default colours of a symbol are a black symbol on a white background. Zint allows you to change this. The
-r or --reverse switch allows the default colours to be inverted so that a white symbol is shown on a black
background (known as reflectance reversal). For example the command

zint -r -d "This Text"
gives an inverted Code 128 symbol. This is not practical for most symbologies but white-on-black is allowed by
the Aztec Code, Data Matrix, Han Xin Code, Grid Matrix and QR Code symbology specifications.

For more specific needs the foreground (ink) and background (paper) colours can be specified using the - -fg
and - -bg options followed by a number in RRGGBB hexadecimal notation (the same system used in HTML).
For example the command

zint --fg=00FFEO® -d "This Text"

This Text

alters the symbol to a bright green.

Figure 15: zint -d "This Text" --fg=00FF00

Zint also supports RGBA colour information for some output file formats which support alpha channels (cur-
rently only PNG, SVG and TIF) in a RRGGBBAA format. For example:

zint --fg=00ffEO55 -d "This Text"

Figure 16: zint -d "This Text" --fg=00FF0055

will produce a semi-transparent green foreground with standard (white) background. Note that transparency
is handled differently for raster and vector files so that...

zint --bg=ffeE00 --fo=FFFFffoo ...

will give different results for PNG and SVG. Experimentation is advised!

In addition the - -nobackground option will simply remove the background from EMF, EPS, GIF, PNG, SVG
and TIF files.

4.8 Rotating the Symbol

The symbol can be rotated through four orientations using the - - rotate option followed by the angle of rotation
as shown below.

--rotate=0 (default)
--rotate=90
--rotate=180
--rotate=270

21

XL SIyL

o

Figure 17: zint -d "This Text" --rotate=90

4.9 Adjusting Image Size

The scale of the image can be altered using the --scale option followed by a multiple of the default
X-dimension. The scale is multiplied by 2 before being applied. The default scale is 1.

For raster output, the default X-dimension is 2 pixels (except for MaxiCode, see 4.9.2 MaxiCode Raster Scaling
below). For example for PNG images a scale of 5 will increase the X-dimension to 10 pixels. Scales for raster
output should be given in increments of 0.5, i.e. 0.5, 1, 1.5, 2, 2.5, 3, 3.5, etc., to avoid the X-dimension varying
across the symbol due to interpolation. 0.5 increments are also faster to render.

The minimum scale for non-dotty raster output is 0.5, giving a minimum X-dimension of 1 pixel, and text will
not be printed for scales less than 1. The minimum scale for raster output in dotty mode is 1 (see 4.14 Working
with Dots).

The minimum scale for vector output is 0.1, giving a minimum X-dimension of 0.2.

The maximum scale for both raster and vector is 100.

4.9.1 Scaling Example

The GS1 General Specifications Section 5.2.6.6 ‘'Symbol dimensions at nominal size’gives an example of an
EAN-13 barcode using the X-dimension of 0.33mm. To print that example as a PNG at 12 dots per mm (dpmm),
the equivalent of 300 dots per inch (dpi = dpmm * 25.4), specify a scale of 2, since .33 * 12 = 3.96 pixels,
or 4 pixels rounding to the nearest pixel:

zint -b EANX -d "501234567890" --compliantheight --scale=2

This will result in output of 38.27mm x 26.08mm (WxH) at 300 dpi. The following table shows the scale to use
(in 0.5 increments) depending on the dpmm desired, for a target X-dimension of 0.33mm:

Table : Scaling for X-dimension 0.33mm

dpmm dpi scale

6 150 1

8 200 15
12 300 2

16 400 3

24 600 4
47 1200 8

95 2400 155

189 4800 31

4.9.2 MaxiCode Raster Scaling

For MaxiCode symbols, which use hexagons, the scale for raster output is multiplied by 10 before being applied.
The minimum scale is 0.2, so the minimum X-dimension is 2 pixels.

22

MaxiCode symbols have fixed size ranges of 24.82mm to 27.93mm in width, and 23.71mm to 26.69mm in height,
excluding quiet zones. The following table shows the scale to use depending on the dpmm desired, with dpi
equivalents:

Table : MaxiCode Raster Scaling

dpmm dpi scale

6 150 0.5
8 200 0.7
12 300 1

16 400 14
24 600 2.1
47 1200 4.1
95 2400 8.2

189 4800 16.4

Note that the 0.5 increment recommended for normal raster output does not apply. Scales below 0.5 are not
recommended and may produce symbols that are not within the minimum/maximum size ranges.

4.10 Input Modes
4.10.1 Unicode, Data, and GS1 Modes

By default all CLI input data is assumed to be encoded in UTF-8 format. Many barcode symbologies encode
data using the Latin-1 (ISO/IEC 8859-1 plus ASCII) character set, so input is converted from UTE-8 to Latin-1
before being put in the symbol. In addition QR Code and its variants and Han Xin Code can by default encode
Japanese (Kanji) or Chinese (Hanzi) characters which are also converted from UTF-8.

There are two exceptions to the Latin-1 default: Grid Matrix, whose default character set is GB 2312 (Chinese);
and UPNQR, whose default character set is Latin-2 (ISO/IEC 8859-2 plus ASCII).

Table : Default Character Sets

Symbology Default character sets Alternate if input not Latin-1
Aztec Code Latin-1 None

Codablock-F Latin-1 None

Code 128 Latin-1 None

Code 16k Latin-1 None

Code One Latin-1 None

Data Matrix Latin-1 None

DotCode Latin-1 None

Grid Matrix GB 2312 (includes ASCII) N/A

Han Xin Latin-1 GB 18030 (includes ASCII)
MaxiCode Latin-1 None

MicroPDF417 Latin-1 None

Micro QR Code Latin-1 Shift JIS (includes ASCII®)
PDF417 Latin-1 None

QR Code Latin-1 Shift JIS (see above)
rMQR Latin-1 Shift JIS (see above)
Ultracode Latin-1 None

UPNQR Latin-2 N/A

All others ASCII N/A

If Zint encounters characters which can not be encoded using the default character encoding then it will take
advantage of the ECI (Extended Channel Interpretations) mechanism to encode the data if the symbology
supports it - see 4.10.2 Input Modes and ECI below.

GS1 data can be encoded in a number of symbologies. Application Identifiers (Als) should be enclosed in

3Shift JIS (JIS X 0201 Roman) re-maps two ASCII characters: backslash (\) to the yen sign (¥), and tilde (~) to overline (U+203E).

23

[square brackets] followed by the data to be encoded (see 6.1.10.3 GS1-128). To encode GS1 data use the
- -gs1 option. GS1 mode is assumed (and doesn’t need to be set) for GS1-128, EAN-14, GS1 DataBar and Com-
posite symbologies but is also available for Aztec Code, Code 16K, Code 49, Code One, Data Matrix, DotCode,
QR Code and Ultracode.

Health Industry Barcode (HIBC) data may also be encoded in the symbologies Aztec Code, Codablock-F, Code
128, Code 39, Data Matrix, MicroPDF417, PDF417 and QR Code. Within this mode, the leading '+' and the
check character are automatically added, conforming to HIBC Labeler Identification Code (HIBC LIC). For
HIBC Provider Applications Standard (HIBC PAS), preface the data with a slash '/'.

The --binary option encodes the input data as given. Automatic code page translation to an ECI page is
disabled, and no validation of the data’s encoding takes place. This may be used for raw binary or binary
encrypted data. This switch plays together with the built-in ECI logic and examples may be found below.

The --fullmultibyte option uses the multibyte modes of QR Code, Micro QR Code, Rectangular Micro QR
Code, Han Xin Code and Grid Matrix for non-ASCII data, maximizing density. This is achieved by using
compression designed for Kanji/Hanzi characters; however some decoders take blocks which are encoded this
way and interpret them as Kanji/Hanzi characters, thus causing data corruption. Symbols encoded with this
option should be checked against decoders before they are used. The popular open-source ZXing decoder is
known to exhibit this behaviour.

4.10.2 Input Modes and ECI

If your data contains characters that are not in the default character set, you may encode it using an ECI-aware
symbology and an ECI value from Table : ECI Codes below. The ECI information is added to your code symbol
as prefix data. The symbologies that support ECI are

Table : ECI-Aware Symbologies

Aztec Code DotCode MaxiCode OR Code
Code One Grid Matrix MicroPDF417 rMQR
Data Matrix Han Xin Code PDF417 Ultracode

Be aware that not all barcode readers support ECI mode, so this can sometimes lead to unreadable barcodes.
If you are using characters beyond those supported by the default character set then you should check that the
resulting barcode can be understood by your target barcode reader.

The ECI value may be specified with the - -eci switch, followed by the value in the column "ECI Code". The
input data should be UTE-8 formatted. Zint automatically translates the data into the target encoding.

Table : ECI Codes

ECICode Character Encoding Scheme (ISO/IEC 8859 schemes include ASCII)

3 ISO/IEC 8859-1 - Latin alphabet No. 1
4 ISO/IEC 8859-2 - Latin alphabet No. 2
5 ISO/IEC 8859-3 - Latin alphabet No. 3
6
7
8

ISO/IEC 8859-4 - Latin alphabet No. 4
ISO/IEC 8859-5 - Latin/Cyrillic alphabet
ISO/IEC 8859-6 - Latin/Arabic alphabet

9 ISO/IEC 8859-7 - Latin/Greek alphabet

10 ISO/IEC 8859-8 - Latin/Hebrew alphabet

11 ISO/IEC 8859-9 - Latin alphabet No. 5 (Turkish)
12 ISO/IEC 8859-10 - Latin alphabet No. 6 (Nordic)
13 ISO/IEC 8859-11 - Latin/Thai alphabet

15 ISO/IEC 8859-13 - Latin alphabet No. 7 (Baltic)
16 ISO/IEC 8859-14 - Latin alphabet No. 8 (Celtic)
17 ISO/IEC 8859-15 - Latin alphabet No. 9

18 ISO/IEC 8859-16 - Latin alphabet No. 10

20 Shift JIS (JIS X 0208 and JIS X 0201)

21 Windows 1250 - Latin 2 (Central Europe)

22 Windows 1251 - Cyrillic

24

ECICode Character Encoding Scheme (ISO/IEC 8859 schemes include ASCII)

23 Windows 1252 - Latin 1

24 Windows 1256 - Arabic

25 UTF-16BE (High order byte first)

26 UTEF-8

27 ASCII (ISO/IEC 646 IRV)

28 Big5 (Taiwan) Chinese Character Set
29 GB 2312 (PRC) Chinese Character Set
30 Korean Character Set EUC-KR (KS X 1001:2002)
31 GBK Chinese Character Set

32 GB 18030 Chinese Character Set

33 UTF-16LE (Low order byte first)

34 UTF-32BE (High order bytes first)

35 UTE-32LE (Low order bytes first)

170 ISO/IEC 646 Invariant*

899 8-bit binary data

An ECI value of 0 does not encode any ECI information in the code symbol (unless the data contains non-
default character set characters). In this case, the default character set applies (see Table : Default Character
Sets above).

If no ECl is specified or a value of 0 is given, and the data does contain characters other than in the default char-
acter set, then Zint will automatically insert the appropriate single-byte ECI if possible (ECIs 3 to 24, excluding
ECI 20), or failing that ECI 26 (UTF-8). A warning will be generated. This mechanism is not applied if the
--binary option is given.

Multiple ECIs can be specified using the - -segN options - see 4.15 Multiple Segments.

Note: the - -eci=3 specification should only be used for special purposes. Using this parameter, the ECI infor-
mation is explicitly added to the symbol. Nevertheless, for ECI Code 3, this is not usually required, as this is
the default encoding for most barcodes, which is also active without any ECI information.

4.10.2.1 Input Modes and ECI Example 1

The Euro sign U4+20AC can be encoded in ISO/IEC 8859-15. The Euro sign has the ISO/IEC 8859-15 codepoint
hex "A4". It is encoded in UTF-8 as the hex sequence: "E2 82 AC". Those 3 bytes are contained in the file
"utf8euro. txt". This command will generate the corresponding code:

zint -b 71 --scale=10 --eci=17 -1 utf8euro.txt

This is equivalent to the commands (using the - -esc switch)
zint -b 71 --scale=10 --eci=17 --esc -d "\XE2\x82\xAC"
zint -b 71 --scale=10 --eci=17 --esc -d "\u20AC"

and to the command:
zint -b 71 --scale=10 --eci=17 -d "€"

Figure 18: zint -b DATAMATRIX --eci=17 -d "€"

4.10.2.2 Input Modes and ECI Example 2

The Chinese character with the Unicode codepoint U+5E38 can be encoded in Big5 encoding. The Big5 repre-
sentation of this character is the two hex bytes: "B1 60" (contained in the file "big5char. txt"). The generation
command for Data Matrix is:

41SO/IEC 646 Invariant is a subset of ASCII with 12 characters undefined: #, $,@, [, \, 1, ", >, {, |, }, ~.

25

zint -b 71 --scale=10 --eci=28 --binary -i big5char.txt

This is equivalent to the command (using the - -esc switch):
zint -b 71 --scale=10 --eci=28 --binary --esc -d "\xB1\x60"

and to the commands (no - -binary switch so conversion occurs):
zint -b 71 --scale=10 --eci=28 --esc -d "\XE5\xB8\xB8"

zint -b 71 --scale=10 --eci=28 --esc -d "\u5E38"

s

Figure 19: zint -b DATAMATRIX --eci=28 -d "\u5E38" --esc

zint -b 71 --scale=10 --eci=28 -d " E"

4.10.2.3 Input Modes and ECI Example 3

Some decoders (in particular mobile app ones) for QR Code assume UTF-8 encoding by default and do not
support ECL In this case supply UTE-8 data and use the - -binary switch so that the data will be encoded as
UTF-8 without conversion:

zint -b 58 --binary -d "UTF-8 data"
[=]¢z[=]
E-

Figure 20: zint -b QRCODE --binary -d "\xE2\x82\xAC\XE5\xB8\xB8" --esc

4.11 Batch Processing

Data can be batch processed by reading from a text file and producing a separate barcode image for each line
of text in that file. To do this use the - -batch switch. To select the input file from which to read data use the -i
option. Zint will automatically detect the end of a line of text (in either Unix or Windows formatted text files)
and produce a symbol each time it finds this. Input files should end with a line feed character - if this is not
present then Zint will not encode the last line of text, and will warn you that there is a problem.

By default Zint will output numbered filenames starting with 00001.png, 00002.png etc. To change this be-
haviour use the - o option in combination with - -batch using special characters in the output filename as shown
in the table below:

Table : Batch Filename Formatting

Input Character Interpretation

~ Insert a number or 0

Insert a number or space
@ Insert a number or *
Any other Insert literally

The following table shows some examples to clarify this method:

Table : Batch Filename Examples

Input Filenames Generated

-o file~~~.svg file001.svg, filed02.svg, fileB@O3.svg
-0 @@@@bar.png ***1.png, ***2.png, ***3.png

26

Input Filenames Generated

-0 my~~~bar.eps my001.bar.eps, my002.bar.eps, my003bar.eps
-0 t@es~t~.png t*esOtl.png, t*esOt2.png, t*esOt3.png

4.12 Direct Output

The finished image files can be output directly to stdout for use as part of a pipe by using the - -direct option.
By default - -direct will output data as a PNG image (or GIF image if 1ibpng is not present), but this can be
altered by supplementing the - -direct option with a - - filetype option followed by the suffix of the file type
required. For example:

zint -b 84 --direct --filetype=pcx -d "Data to encode"

This command will output the symbol as a PCX file to stdout. The currently supported output file formats are
shown in the following table:

Table : Output File Formats

Abbreviation File format

BMP Windows Bitmap

EMF Enhanced Metafile Format

EPS Encapsulated PostScript

GIF Graphics Interchange Format

PCX ZSoft Paintbrush image

PNG Portable Network Graphic

SVG Scalable Vector Graphic

TIF Tagged Image File Format

TXT Text file (see 4.18 Other Output Options)

CAUTION: Outputting binary files to the command shell without catching that data in a pipe can have unpre-
dictable results. Use with care!

4.13 Automatic Filenames

The - -mirror option instructs Zint to use the data to be encoded as an indicator of the filename to be used.
This is particularly useful if you are processing batch data. For example the input data "1234567" will result
in a file named "1234567.png".

There are restrictions, however, on what characters can be stored in a filename, so the filename may vary from
the data if the data includes non-printable characters, for example, and may be shortened if the data input is
long.

To set the output file format use the - - filetype option as detailed above in 4.12 Direct Output.

4.14 Working with Dots

Matrix codes can be rendered as a series of dots or circles rather than the normal squares by using the - -dotty
option. This option is only available for matrix symbologies, and is automatically selected for DotCode. The
size of the dots can be adjusted using the - -dotsize option followed by the diameter of the dot, where that
diameter is given as a multiple of the X-dimension. The minimum dot size is 0.01, the maximum is 20. The
default size is 0.8.

The default and minimum scale for raster output in dotty mode is 1.

27

Figure 21: zint -b CODEONE -d "123456789012345678" --dotty --vers=9

4.15 Multiple Segments

If you need to specify different ECIs for different sections of the input data, the - -seg1 to - - seg9 options can
be used. Each option is of the form - -segN=ECI, data where ECI is the ECI code (see Table : ECI Codes) and
data is the data to which this applies. This is in addition to the ECI and data specified using the - -eci and -d
options which must still be present and which in effect constitute segment 0. For instance

zint -b AZTEC_CODE --eci=9 -d "Keipevo" --segl=7,"TekcT" --seg2=20," XE"

specifies 3 segments: segment 0 with ECI 9 (Greek), segment 1 with ECI 7 (Cyrillic), and segment 2 with ECI
20 (Shift JIS). Segments must be consecutive.

The symbology must be ECl-aware (see Table : ECI-Aware Symbologies).

Figure 22: zint -b AZTEC --eci=9 -d "Keipevo" --segl=7,"TekcT" --seg2=20," X&E"

EClISs of zero may be given, in which case Zint will automatically determine an ECI if necessary, as described in
section 4.10.2 Input Modes and ECI.

Multiple segments are not currently supported for use with GS1 data.

4.16 Structured Append

Structured Append is a method of splitting data among several symbols so that they form a sequence that can
be scanned and re-assembled in the correct order on reading, and is available for Aztec Code, Code One, Data
Matrix, DotCode, Grid Matrix, MaxiCode, MicroPDF417, PDF417, QR Code and Ultracode.

The - -structapp option marks a symbol as part of a Structured Append sequence, and has the format

Figure 23: zint -b DATAMATRIX -d "2nd of 3" --structapp="2,3,5006"

--structapp=I,C[, ID]

where I is the index (position) of the symbol in the Structured Append sequence, C is the count or total number
of symbols in the sequence, and ID is an optional identifier (not available for Code One, DotCode or MaxiCode)
that is the same for all symbols belonging to the same sequence. The index is 1-based and goes from 1 to count.
Count must be 2 or more. See the individual symbologies for further details.

4.17 Help Options

There are three help options which give information about how to use the command line. The -h or --help
option will display a list of all of the valid options available, and also gives the exact version of the software
(the version by itself can be displayed with -v or --version).

The -t or - - types option gives the table of symbologies along with the symbol ID numbers and names.

The -e or - -ecinos option gives a list of the ECI codes.

28

4.18 Other Output Options

For linear barcodes the text present in the output image can be removed by using the - -notext option.

The text can be set to bold using the --bold option, or a smaller font can be substituted using the --small
option. The --bold and - -small options can be used together if required, but only for vector output.

This Text

Figure 24: zint --bold -d "This Text" --small

Zint can output a representation of the symbol data as a set of hexadecimal values if asked to output to a text
file ("*.txt") or if given the option - -filetype=txt. This can be used for test and diagnostic purposes.

The - -cmyk option is specific to output in Encapsulated PostScript and TIF, and converts the RGB colours used
to the CMYK colour space. Setting custom colours at the command line will still need to be done in RRGGBB
format.

Additional options are available which are specific to certain symbologies. These may, for example, control the
amount of error correction data or the size of the symbol. These options are discussed in section 6. Types of
Symbology of this guide.

29

5. Using the API

Zint has been written using the C language and has an API for use with C/C++ language programs. A Qt
interface is available in the "backend_gt" sub-directory, and a Tcl interface is available in the "backend_tc1"
sub-directory.

The libzint API has been designed to be very similar to that used by the GNU Barcode package. This allows
easy migration from GNU Barcode to Zint. Zint, however, uses none of the same function names or option
names as GNU Barcode. This allows you to use both packages in your application without conflict if you wish.

5.1 Creating and Deleting Symbols

The symbols manipulated by Zint are held in a zint_symbol structure defined in "zint.h". These symbols
are created with the zZBarcode_Create() function and deleted using the zZBarcode_Delete() function. For
example the following code creates and then deletes a symbol:

#include <zint.h>

#include <stdio.h>

int main()

{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
if (my_symbol != NULL) {

printf("Symbol successfully created!\n");

}
ZBarcode_Delete(my_symbol);
return 0O;

}

When compiling this code it will need to be linked with the 1ibzint library using the -1zint option:

gcc -o simple simple.c -lzint

5.2 Encoding and Saving to File

To encode data in a barcode use the ZBarcode_Encode() function. To write the symbol to a file use the zBar -
code_Print() function. For example the following code takes a string from the command line and outputs a
Code 128 symbol in a PNG file named "out.png" (or a GIF file called "out.gif" if 1ibpng is not present) in
the current working directory:

#include <zint.h>

int main(int argc, char **argv)

{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
ZBarcode_Encode(my_symbol, argv[1], 0);
ZBarcode_Print(my_symbol, 0);
ZBarcode_Delete(my_symbol);
return 0;

3

This can also be done in one stage using the ZBarcode_Encode_and_Print() function as shown in the next
example:

#include <zint.h>

int main(int argc, char **argv)

{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
ZBarcode_Encode_and_Print(my_symbol, argv[1l], 0, 0);
ZBarcode_Delete(my_symbol);
return 0,

}

30

Note that when using the API, the input data is assumed to be 8-bit binary unless the input_mode variable in
the zint_symbol structure is set - see 5.10 Setting the Input Mode for details.

5.3 Encoding and Printing Functions in Depth

The functions for encoding and printing barcodes are defined as:

int ZBarcode_Encode(struct zint_symbol *symbol,
const unsigned char *source, int length);

int ZBarcode_Encode_File(struct zint_symbol *symbol,
const char *filename);

int ZBarcode_Print(struct zint_symbol *symbol, int rotate_angle);

int ZBarcode_Encode_and_Print(struct zint_symbol *symbol,
const unsigned char *source, int length, int rotate_angle);

int ZBarcode_Encode_File_and_Print(struct zint_symbol *symbol,
const char *filename, int rotate_angle);

In these definitions length can be used to set the length of the input string. This allows the encoding of NUL
(ASCII 0) characters in those symbologies which allow this. A value of 0 will disable this usage and Zint will
encode data up to the first NUL character in the input string, which must be present.

The rotate_angle value can be used to rotate the image when outputting. Valid values are 0, 90, 180 and 270.

The zBarcode_Encode_File() and zBarcode_Encode_File_and_Print() functions can be used to encode
data read directly from a text file where the filename is given in the NUL-terminated filename string.

If printing more than one barcode, the zint_symbo1 structure may be re-used by calling the ZBarcode_Clear ()
function after each barcode to free any output buffers allocated. The zint_symbolinput variables must be reset.

5.4 Buffering Symbols in Memory (raster)

In addition to saving barcode images to file Zint allows you to access a representation of the resulting bitmap
image in memory. The following functions allow you to do this:

int ZBarcode_Buffer(struct zint_symbol *symbol, int rotate_angle);

int ZBarcode_Encode_and_Buffer(struct zint_symbol *symbol,
const unsigned char *source, int length, int rotate_angle);

int ZBarcode_Encode_File_and_Buffer(struct zint_symbol *symbol,
const char *filename, int rotate_angle);

The arguments here are the same as above. The difference is that instead of saving the image to a file it is
placed in an unsigned character array. The bitmap pointer is set to the first memory location in the array and
the values barcode_width and barcode_height indicate the size of the resulting image in pixels. Rotation and
colour options can be used with the buffer functions in the same way as when saving to a file. The pixel data
can be extracted from the array by the method shown in the example below where render_pixel() is assumed
to be a function for drawing a pixel on the screen implemented by the external application:

int row, col, i = 0;

int red, blue, green;

for (row = 0; row < my_symbol->bitmap_height; row++) {
for (col = 0; col < my_symbol->bitmap_width; col++) {
red = (int) my_symbol->bitmap[i];
green = (int) my_symbol->bitmap[i + 1];
blue = (int) my_symbol->bitmap[i + 2];
render_pixel(row, col, red, green, blue);
i+= 3;

31

}

Where speed is important, the buffer can be returned instead in a more compact intermediate form using the
output option OUT_BUFFER_INTERMEDIATE. Here each byte is an ASCII value: '1' for foreground colour and
'0' for background colour, except for Ultracode, which also uses colour codes: 'W' for white, 'C' for cyan, 'B'
for blue, 'M' for magenta, 'R' for red, 'Y' for yellow, 'G' for green, and 'K' for black. The loop for accessing
the data is then:

int row, col, i = 0;

for (row = 0; row < my_symbol->bitmap_height; row++) {
for (col = 0; col < my_symbol->bitmap_width; col++) {
render_pixel(row, col, my_symbol->bitmap[i]);
i++;

’

5.5 Buffering Symbols in Memory (vector)

Symbols can also be saved to memory in a vector representation as well as a bitmap one. The following func-
tions, exactly analogous to the ones above, allow you to do this:

int ZBarcode_Buffer_Vector(struct zint_symbol *symbol, int rotate_angle);

int ZBarcode_Encode_and_Buffer_Vector(struct zint_symbol *symbol,
const unsigned char *source, int length, int rotate_angle);

int ZBarcode_Encode_File_and_Buffer_Vector(struct zint_symbol *symbol,
const char *filename, int rotate_angle);

Here the vector pointer is set to a header which contains pointers to lists of structures representing the various
elements of the barcode: rectangles, hexagons, strings and circles. To draw the barcode, each of the element
types is iterated in turn, and using the information stored is drawn by a rendering system. For instance, to draw
a barcode using a rendering system with prepare_canvas(), draw_rect(), draw_hexagon(), draw_string(),
and draw_circle() routines available:

struct zint_vector_rect *rect;
struct zint_vector_hexagon *hexagon;
struct zint_vector_string *string;
struct zint_vector_circle *circle;

prepare_canvas(my_symbol->vector->width, my_symbol->vector->height,
my_symbol->scale, my_symbol->fgcolour, my_symbol->bgcolor,
rotate_angle);

for (rect = my_symbol->vector->rectangles; rect; rect = rect->next) {
draw_rect(rect->x, rect->y, rect->width, rect->height,
rect->colour);

for (hexagon = my_symbol->vector->hexagons; hexagon; hexagon = hexagon->next) {
draw_hexagon(hexagon->x, hexagon->y, hexagon->diameter,
hexagon->rotation);

for (string = my_symbol->vector->strings; string; string
draw_string(string->x, string->y, string->fsize,
string->rotation, string->halign,
string->text, string->length);

string->next) {

for (circle = my_symbol->vector->circles; circle; circle = circle->next) {
draw_circle(circle->x, circle->y, circle->diameter,
circle->width, circle->colour);

32

5.6 Setting Options

So far our application is not very useful unless we plan to only make Code 128 symbols and we don’t mind
that they only save to "out.png". As with the CLI program, of course, these options can be altered. The way
this is done is by altering the contents of the zint_symbo1l structure between the creation and encoding stages.
The zint_symbol structure consists of the following variables:

Table : API Structure zint_symbol

Variable Name Type Meaning Default Value
symbology integer Symbol to use (see 5.8 Specifyinga BARCODE_CODE128
Symbology).
height float Symbol height, excluding fixed Symbol dependent
width-to-height symbols.
scale float Scale factor for adjusting size of 1.0
image.
whitespace_width integer Horizontal whitespace width. 0
whitespace_height integer Vertical whitespace height. 0
border_width integer Border width. 0
output_options integer Set various output file parameters 0 (none)
(see 5.9 Adjusting Other Output
Options).
fgcolour character Foreground (ink) colour as "000000"
string RGB/RGBA hexadecimal string.
Must be 6 or 8 characters followed
by a terminating NUL.
bgcolour character Background (paper) colour as "FFFFFF"
string RGB/RGBA hexadecimal string.
Must be 6 or 8 characters followed
by a terminating NUL.
fgcolor pointer Points to fgcolour allowing alternate
spelling.
bgcolor pointer Points to bgcolour allowing
alternate spelling.
outfile character Contains the name of the file to "out.png"
string output a resulting barcode symbol
to. Must end in .png, .gif, .bmp,
.emf, .eps, .pcx, .svg, .tif or
. txt followed by a terminating NUL.
primary character Primary message data for more "' (empty)
string complex symbols, with a
terminating NUL.
option_1 integer Symbol specific options. -1
option_2 integer Symbol specific options. 0
option_3 integer Symbol specific options. 0
show_hrt integer Set to 0 to hide text 1
input_mode integer Set encoding of input data (see 5.10 ~ DATA_MODE
Setting the Input Mode).
eci integer Extended Channel Interpretation 0 (none)
code.
dot_size float Diameter of dots used in dotty 40/50
mode.
guard_descent float Height of guard bar descent 5.0

(UPC/EAN only)

5This value is ignored for Aztec (including HIBC and Aztec Rune), Code One, Data Matrix (including HIBC), DotCode, Grid Matrix,
Han Xin, MaxiCode, QR Code (including HIBC, Micro QR, rMQR and UPNQR), and Ultracode - all of which have a fixed width-to-height
ratio (or, in the case of Code One, a fixed height).

33

Variable Name Type Meaning Default Value
structapp Structured Mark a symbol as part of a sequence count 0 (disabled)
Append of symbols.
structure
warn_level integer Affects error/warning value WARN_DEFAULT
returned by Zint API (see 5.7
Handling Errors).
text unsigned Human Readable Text, which "" (empty) (output
character usually consists of input data plus only)
string one more check digit. Uses UTF-8
formatting, with a terminating NUL.
rows integer Number of rows used by the (output only)
symbol.
width integer Width of the generated symbol. (output only)
encoding_data array of Representation of the encoded data. (output only)
unsigned
character
arrays
row_height array of floats =~ Representation of the height of a (output only)
row.
errtxt character Error message in the event that an (output only)
string error occurred, with a terminating
NUL.
bitmap pointer to Pointer to stored bitmap image. (output only)
unsigned
character array
bitmap_width integer Width of stored bitmap image (in (output only)
pixels).
bitmap_height integer Height of stored bitmap image (in (output only)
pixels).
alphamap pointer to Pointer to array representing alpha (output only)
unsigned channel (or NULL if no alpha
character array channel needed)
bitmap_byte_length integer Size of BMP bitmap data. (output only)
vector pointer to Pointer to vector header containing (output only)
vector pointers to vector elements.
structure

To alter these values use the syntax shown in the example below. This code has the same result as the previous
example except the output is now taller and plotted in green.

#include <zint.h>

#include <string.h>

int main(int argc, char **argv)

{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
strcpy(my_symbol->fgcolour, "00ff00");
my_symbol->height = 400.0f;
ZBarcode_Encode_and_Print(my_symbol, argv[1l], 0, 0);
ZBarcode_Delete(my_symbol);
return 0;

}

Background removal for EMF, EPS, GIF, PNG, SVG and TIF files can be achieved by setting the background
alpha to "00" where the values for R, G and B will be ignored:

34

strcpy(my_symbol->bgcolour,

5.7 Handling Errors

"55555500") ;

If errors occur during encoding a non-zero integer value is passed back to the calling application. In addition
the errtxt variable is used to give a message detailing the nature of the error. The errors generated by Zint are

given in the table below:

Table : API Warning and Error Return Values

Return Value

Meaning

ZINT_WARN_INVALID_OPTION

ZINT_WARN_USES_ECI

ZINT_WARN_NONCOMPLIANT

ZINT_ERROR

ZINT_ERROR_TOO_LONG

ZINT_ERROR_INVALID_DATA

ZINT_ERROR_INVALID_CHECK

ZINT_ERROR_INVALID_OPTION

ZINT_ERROR_ENCODING_PROBLEM

ZINT_ERROR_FILE_ACCESS

ZINT_ERROR_MEMORY

ZINT_ERROR_FILE_WRITE

ZINT_ERROR_USES_ECI

ZINT_ERROR_NONCOMPLIANT

One of the values in zint_struct was set incorrectly but Zint has
made a guess at what it should have been and generated a
barcode accordingly.

Zint has automatically inserted an ECI character. The symbol may
not be readable with some readers.

The symbol was created but is not compliant with certain
standards set in its specification (e.g. height, GS1 AI data
lengths).

Marks the divide between warnings and errors. For return values
greater than or equal to this no symbol (or only an incomplete
symbol) is generated.

The input data is too long or too short for the selected symbology.
No symbol has been generated.

The data to be encoded includes characters which are not
permitted by the selected symbology (e.g. alphabetic characters
in an EAN symbol). No symbol has been generated.

Data with an incorrect check digit has been entered. No symbol
has been generated.

One of the values in zint_struct was set incorrectly and Zint
was unable to guess what it should have been. No symbol has
been generated.

A problem has occurred during encoding of the data. This should
never happen. Please contact the developer if you encounter this
error.

Zint was unable to open the requested output file. This is usually
a file permissions problem.

Zint ran out of memory. This should only be a problem with
legacy systems.

Zint failed to write all contents to the requested output file. This
should only occur if the output device becomes full.

Returned if warn_level set to WARN_FAIL_ALL and
ZINT_WARN_USES_ECI occurs.

Returned if warn_level set to WARN_FAIL_ALL and
ZINT_WARN_NONCOMPLIANT occurs.

To catch errors use an integer variable as shown in the code below:

#include <zint.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)

{

struct zint_symbol *my_symbol;

int error;

my_symbol = ZBarcode_Create();
strcpy(my_symbol->fgcolour,

"nonsense");

error = ZBarcode_Encode_and_Print(my_symbol, argv[1l], 0, 0);

if (error '= 0) {

35

/* some warning or error occurred */
printf("%s\n", my_symbol->errtxt);

}

if (error >= ZINT_ERROR) {
/* stop now */
ZBarcode_Delete(my_symbol);
return 1;

}

/* otherwise carry on with the rest of the application */
ZBarcode_Delete(my_symbol);
return 0O;

}

This code will exit with the appropriate message:

Error 653: Malformed foreground colour 'NONSENSE' (hexadecimal only)

To treat all warnings as errors, set symbol->warn_level to WARN_FAIL_ALL.

5.8 Specifying a Symbology

Symbologies can be specified by number or by name as shown in the Table : : Barcode Types (Symbologies).
For example

symbol->symbology = BARCODE_LOGMARS;

means the same as

symbol->symbology 50;

5.9 Adjusting Other Output Options

The output_options variable can be used to adjust various aspects of the output file. To select more than one
option from the table below simply OR them together when adjusting this value:

my_symbol->output_options |= BARCODE_BIND | READER_INIT;

Table : API output_options Values

Value Effect

0 No options selected.

BARCODE_BIND Boundary bars above and below the symbol and between rows if
stacking multiple symbols.®

BARCODE_BOX Add a box surrounding the symbol and whitespace.

BARCODE_STDOUT Output the file to stdout.

READER_INIT Add a reader initialisation symbol to the data before encoding.

SMALL_TEXT Use a smaller font for the Human Readable Text.

BOLD_TEXT Embolden the Human Readable Text.

CMYK_COLOUR Select the CMYK colour space option for Encapsulated PostScript and
TIF files.

BARCODE_DOTTY_MODE Plot a matrix symbol using dots rather than squares.

GS1_GS_SEPARATOR Use GS instead of FNC1 as GS1 separator (Data Matrix only).

OUT_BUFFER_INTERMEDIATE Return the bitmap buffer as ASCII values instead of separate colour
channels (OUT_BUFFER only).

BARCODE_QUIET_ZONES Add compliant quiet zones (additional to any specified whitespace).”

BARCODE_NO_QUIET_ZONES Disable quiet zones, notably those with defaults.

COMPLIANT_HEIGHT Warn if height not compliant and use standard height (if any) as
default.

%This flag is always set for Codablock-F, Code 16K and Code 49. Special considerations apply to ITF-14 - see 6.1.2.6 ITF-14.
7Codablock-F, Code 16K, Code 49, ITF-14, EAN-2 to EAN-13, ISBN, UPC-A and UPC-E have compliant quiet zones added by default.

36

5.10 Setting the Input Mode

The way in which the input data is encoded can be set using the input_mode property. Valid values are shown
in the table below.

Table : API input_mode Values

Value Effect

DATA_MODE Uses full 8-bit range interpreted as binary data.

UNICODE_MODE Uses UTF-8 input.

GS1_MODE Encodes GS1 data using FNC1 characters.

The above are exclusive, the following optional and OR-ed.

ESCAPE_MODE Process input data for escape sequences.

GS1PARENS_MODE Parentheses (round brackets) used in GS1 data instead of square brackets to
delimit Application Identifiers (parentheses must not otherwise occur in the
data).

GSINOCHECK_MODE Do not check GS1 data for validity, i.e. suppress checks for valid Als and data

lengths. Invalid characters (e.g. control characters, extended ASCII characters)
are still checked for.
HEIGHTPERROW_MODE Interpret the height variable as per-row rather than as overall height.
FAST_MODE Use faster if less optimal encodation for symbologies that support it (currently
DATAMATRIX only).

The default mode is DATA_MODE. (Note that this differs from the default for the CLI and GUI, which is UNI-
CODE_MODE.)

DATA_MODE, UNICODE_MODE and GS1_MODE are mutually exclusive, whereas ESCAPE_MODE, GS1PARENS_MODE,
GS1NOCHECK_MODE, HEIGHTPERROW_MODE and FAST_MODE are optional. So, for example, you can set

my_symbol->input_mode = UNICODE_MODE | ESCAPE_MODE;

or

my_symbol->input_mode = GS1_MODE | GS1PARENS_MODE | GS1NOCHECK_MODE;

whereas
my_symbol->input_mode = DATA_MODE | GS1_MODE;

is not valid.

Permissible escape sequences are listed in Table : Escape Sequences. An example of GS1PARENS_MODE usage is
given in section 6.1.10.3 GS1-128.

GS1NOCHECK_MODE is for use with legacy systems that have data that does not conform to the current GS1 stan-
dard. Printable ASCII input is still checked for, as is the validity of GS1 data specified without Als (e.g. linear
data for GS1 DataBar Omnidirectional /Limited/etc.).

For HEIGHTPERROW_MODE, see - -heightperrow in section 4.4 Adjusting Height. The height variable should be
set to the desired per-row value on input (it will be set to the overall height on output).

5.11 Multiple Segments

For input data requiring multiple EClIs, the following functions may be used:

int ZBarcode_Encode_Segs(struct zint_symbol *symbol,
const struct zint_seg segs[], const int seg_count);

int ZBarcode_Encode_Segs_and_Print(struct zint_symbol *symbol,
const struct zint_seg segs[], const int seg_count, int rotate_angle);

int ZBarcode_Encode_Segs_and_Buffer(struct zint_symbol *symbol,
const struct zint_seg segs[], const int seg_count, int rotate_angle);

37

int ZBarcode_Encode_Segs_and_Buffer_Vector(struct zint_symbol *symbol,
const struct zint_seg segs[], const int seg_count, int rotate_angle);

These are direct analogues of the previously mentioned ZBarcode_Encode(), ZBarcode_Encode_and_Print(),
ZBarcode_Encode_and_Buffer () and zBarcode_Encode_and_Buffer_Vector() respectively, where instead
of a pair consisting of "source, length", a pair consisting of "segs, seg_count" is given, with segs being
an array of struct zint_seg segments and seg_count being the number of elements it contains. The zint_seg
structure is of the form:

struct zint_seg {
unsigned char *source; /* Data to encode */

int length; /* Length of “source’. If 0, “source’ must be
NUL-terminated */
int eci; /* Extended Channel Interpretation */

be

The symbology must support ECIs (see Table : ECI-Aware Symbologies). For example:

#include <zint.h>
int main(int argc, char **argv)
{
struct zint_seg segs[] = {
{ "Kelpevo", 0, 9 },
{ "Tekct", 0, 7 },
{" X&", 0, 20}
}s
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
my_symbol->symbology = BARCODE_AZTEC;
my_symbol->input_mode = UNICODE_MODE;
ZBarcode_Encode_Segs(my_symbol, segs, 3);
ZBarcode_Print(my_symbol, 0);
ZBarcode_Delete(my_symbol);
return 0O;

}

A maximum of 256 segments may be specified. Use of multiple segments with GS1 data is not currently sup-
ported.

5.12 Verifying Symbology Availability

An additional function available in the API is:
int zZBarcode_ValidID(int symbol_id);

which allows you to check whether a given symbology is available, returning a non-zero value if so. For exam-
ple:
if (zBarcode_ValidID(BARCODE_PDF417) != 0) {
printf("PDF417 available\n");
} else {
printf("PDF417 not available\n");

}

Another function that may be useful is:

int ZBarcode_BarcodeName(int symbol_id, char name[32]);

which copies the name of a symbology into the supplied name buffer, which should be 32 characters in length.
The name is NUL-terminated, and zero is returned on success. For instance:
char name[32];
if (ZBarcode_BarcodeName (BARCODE_PDF417, name) == 0) {
printf("%s\n'", name);

}

38

will print BARCODE_PDF417

5.13 Checking Symbology Capabilities

It can be useful for frontend programs to know the capabilities of a symbology. This can be determined using
another additional function:

unsigned int ZBarcode_Cap(int symbol_id, unsigned int cap_flag);
by OR-ing the flags below in the cap_flag argument and checking the return to see which are set.

Table : API Capability Flags

Value Meaning

ZINT_CAP_HRT Can the symbology print Human Readable Text?

ZINT_CAP_STACKABLE Is the symbology stackable?

ZINT_CAP_EXTENDABLE Is the symbology extendable with add-on data? (i.e. is it UPC/EAN?)

ZINT_CAP_COMPOSITE Does the symbology support composite data? (see 6.3 Composite
Symbols (ISO 24723) below)

ZINT_CAP_ECI Does the symbology support Extended Channel Interpretations?

ZINT_CAP_GS1 Does the symbology support GS1 data?

ZINT_CAP_DOTTY Can the symbology be outputted as dots?

ZINT_CAP_QUIET_ZONES Does the symbology have default quiet zones?

ZINT_CAP_FIXED_RATIO Does the symbology have a fixed width-to-height (aspect) ratio?

ZINT_CAP_READER_INIT Does the symbology support Reader Initialisation?

ZINT_CAP_FULL_MULTIBYTE Is the ZINT_FULL_MULTIBYTE option applicable?

ZINT_CAP_MASK Is mask selection applicable?

ZINT_CAP_STRUCTAPP Does the symbology support Structured Append?

ZINT_CAP_COMPLIANT_HEIGHT Does the symbology have a compliant height defined?

For example:

unsigned int cap = ZBarcode_Cap(BARCODE_PDF417, ZINT_CAP_HRT | ZINT_CAP_ECI);
if (cap & ZINT_CAP_HRT) {

printf("PDF417 supports HRT\n");
} else {

printf("PDF417 does not support HRT\n");

}
if (cap & ZINT_CAP_ECI) {
printf("PDF417 supports ECI\n");
} else {
printf("PDF417 does not support ECI\n");

b

5.14 Zint Version

Lastly, the version of the Zint library linked to is returned by:

int ZBarcode_Version();

The version parts are separated by hundreds. For instance, version "2.9.1" is returned as "20901".

39

6. Types of Symbology

6.1 One-Dimensional Symbols

One-dimensional or linear symbols are what most people associate with the term barcode. They consist of a
number of bars and a number of spaces of differing widths.

921232096769

6.1.1 Code 11

Figure 25: zint -b CODE11 -d "9212320967"

Developed by Intermec in 1977, Code 11 is similar to Code 2 of 5 Matrix and is primarily used in telecommuni-
cations. The symbol can encode data consisting of the digits 0-9 and the dash character (-) up to a maximum
of 121 characters. Two modulo-11 check digits are added by default. To add just one check digit, set - -vers=1
(APIoption_2 = 1). To add no check digits, set - -vers=2 (APl option_2 = 2).

6.1.2 Code 2 of 5

Code 2 of 5 is a family of one-dimensional symbols, 8 of which are supported by Zint. Note that the names
given to these standards alters from one source to another so you should take care to ensure that you have the
right barcode type before using these standards.

9212320967

6.1.2.1 Standard Code 2 of 5

Figure 26: zint -b C25STANDARD -d "9212320967"

Also known as Code 2 of 5 Matrix this is a self-checking code used in industrial applications and photo devel-
opment. Standard Code 2 of 5 will encode numeric input (digits 0-9) up to a maximum of 80 digits. No check
digit is added by default. To add a check digit, set - -vers=1 (APl option_2 = 1). To add a check digit but not
show it in the Human Readable Text, set - -vers=2 (APl option_2 = 2).

9212320967

6.1.2.2 IATA Code 2 of 5

Iﬁgure27:zint -b C25IATA -d "9212320967"

Used for baggage handling in the air-transport industry by the International Air Transport Agency, this self-
checking code will encode numeric input (digits 0-9) up to a maximum of 45 digits. No check digit is added
by default. To add a check digit, set - -vers=1 (APl option_2 = 1). To add a check digit but not show it in the
Human Readable Text, set - -vers=2 (APl option_2 = 2).

40

6.1.2.3 Industrial Code 2 of 5

9212320967

Figure 28: zint -b C25IND -d "9212320967"

Industrial Code 2 of 5 can encode numeric input (digits 0-9) up to a maximum of 45 digits. No check digit is
added by default. To add a check digit, set - -vers=1 (APl option_2 = 1). To add a check digit but not show
it in the Human Readable Text, set - -vers=2 (APl option_2 = 2).

6.1.2.4 Interleaved Code 2 of 5 (ISO 16390)

9212320967

Figure 29: zint -b C25INTER --compliantheight -d '"9212320967"

This self-checking symbology encodes pairs of numbers, and so can only encode an even number of digits (0-
9). If an odd number of digits is entered a leading zero is added by Zint. A maximum of 45 pairs (90 digits)
can be encoded. No check digit is added by default. To add a check digit, set - -vers=1 (APl option_2 = 1).
To add a check digit but not show it in the Human Readable Text, set - -vers=2 (APl option_2 = 2).

9212320967

6.1.2.5 Code 2 of 5 Data Logic

Figure 30: zint -b C25L0GIC -d '"9212320967"

Data Logic does not include a check digit by default and can encode numeric input (digits 0-9) up to a maximum
of 80 digits. To add a check digit, set --vers=1 (APl option_2 = 1). To add a check digit but not show it in
the Human Readable Text, set - -vers=2 (APl option_2 = 2).

6.1.2.6 ITF-14

92123209671459

Figure 31: zint -b ITF14 --compliantheight -d "9212320967145"

41

ITE-14, also known as UPC Shipping Container Symbol or Case Code, is based on Interleaved Code 2 of 5 and
requires a 13 digit numeric input (digits 0-9). One modulo-10 check digit is added by Zint.

If no border option is specified Zint defaults to adding a bounding box with a border width of 5. This behaviour
can be overridden by using the - -bind option (API output_options |= BARCODE_BIND). Similarly the border
width can be overridden using - -border (API border_width). If a symbol with no border is required this can
be achieved by explicitly setting the border type to box (or bind) and leaving the border width 0.

92123209671459

Figure 32: zint -b ITF14 --box --compliantheight -d "9212320967145"

92123209671456

6.1.2.7 Deutsche Post Leitcode

Figure 33: zint -b DPLEIT -d "9212320967145"

Leitcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for mailing purposes. Leitcode
requires a 13-digit numerical input and includes a check digit.

912320967127

6.1.2.8 Deutsche Post Identcode

Figure 34: zint -b DPIDENT -d "91232096712"

Identcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for mailing purposes. Identcode
requires an 11-digit numerical input and includes a check digit.

25272 170270

Figure 35: zint -b UPCA --compliantheight -d "72527270270"

6.1.3 Universal Product Code (ISO 15420)
6.1.3.1 UPC Version A

7 3

42

UPC-A is used in the United States for retail applications. The symbol requires an 11 digit article number. The
check digit is calculated by Zint. In addition EAN-2 and EAN-5 add-on symbols can be added using the +
character. For example, to draw a UPC-A symbol with the data 72527270270 with an EAN-5 add-on showing
the data 12345 use the command:

zint -b UPCA -d 72527270270+12345

or encode a data string with the + character included:
my_symbol->symbology = BARCODE_UPCA;

error = ZBarcode_Encode_and_Print(my_symbol, "72527270270+12345", 0, 0);

5272 170270 3

Figure 36: zint -b UPCA --compliantheight -d "72527270270+12345"

7 2

If your input data already includes the check digit symbology BARCODE_UPCA_CHK (35) can be used which takes
a 12 digit input and validates the check digit before encoding.

You can adjust the gap between the main symbol and an add-on in multiples of the X-dimension by setting
--addongap (APl option_2) to a value between 9 (default) and 12. The height in X-dimensions that the guard
bars descend below the main bars can be adjusted by setting - -guarddescent (API guard_descent) to a value

between 0 and 20 (default 5).
123456 2

Figure 37: zint -b UPCE --compliantheight -d "1123456"

6.1.3.2 UPC Version E

1

UPC-E is a zero-compressed version of UPC-A developed for smaller packages. The code requires a 6 digit
article number (digits 0-9). The check digit is calculated by Zint. EAN-2 and EAN-5 add-on symbols can be
added using the + character as with UPC-A. In addition Zint also supports Number System 1 encoding by
entering a 7-digit article number stating with the digit 1. For example:

zint -b UPCE -d 1123456

or

my_symbol->symbology = BARCODE_UPCE;
error = ZBarcode_Encode_and_Print(my_symbol, "1123456", 0, 0);
If your input data already includes the check digit symbology BARCODE_UPCE_CHK (38) can be used which takes

a 7 or 8 digit input and validates the check digit before encoding.

You can adjust the gap between the main symbol and an add-on in multiples of the X-dimension by setting
--addongap (API option_2) to a value between 7 (default) and 12. The height in X-dimensions that the guard
bars descend below the main bars can be adjusted by setting - -guarddescent (API guard_descent) to a value
between 0 and 20 (default 5).

43

6.1.4 European Article Number (ISO 15420)
6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13

678906

Figure 38: zint -b EANX --compliantheight -d "4512345678906"

4 1512345

The EAN system is used in retail across Europe and includes standards for EAN-2, EAN-5, EAN-8 and EAN-13
which encode 2, 5, 7 or 12 digit numbers respectively. Zint will decide which symbology to use depending
on the length of the input data. In addition EAN-2 and EAN-5 add-on symbols can be added to EAN-8 and
EAN-13 symbols using the + character as with UPC symbols. For example:

zint -b EANX -d 54321
54321

Figure 39: zint -b EANX --compliantheight -d "54321"

will encode a stand-alone EAN-5, whereas
zint -b EANX -d 7432365+54321

will encode an EAN-8 symbol with an EAN-5 add-on. As before these results can be achieved using the API:
my_symbol->symbology = BARCODE_EANX;

error = ZBarcode_Encode_and_Print(my_symbol, "54321", 0, 0);

error = ZBarcode_Encode_and_Print(my_symbol, "7432365+54321", 0, 0);

54321

7432113654 m “H

Figure 40: zint -b EANX --compliantheight -d "7432365+54321"

All of the EAN symbols include check digits which are added by Zint.

If you are encoding an EAN-8 or EAN-13 symbol and your data already includes the check digit then you can

use symbology BARCODE_EANX_CHK (14) which takes an 8 or 13 digit input and validates the check digit before
encoding.

You can adjust the gap between the main symbol and an add-on in multiples of the X-dimension by setting
--addongap (API option_2) to a value between 7 (default) and 12. The height in X-dimensions that the guard
bars descend below the main bars can be adjusted by setting - -guarddescent (APl guard_descent) to a value
between 0 and 20 (default 5).

44

6.1.4.2 SBN, ISBN and ISBN-13

055124

9 1789295

Figure 41: zint -b ISBNX --compliantheight -d "9789295055124"

EAN-13 symbols (also known as Bookland EAN-13) can also be produced from 9-digit SBN, 10-digit ISBN or
13-digit ISBN-13 data. The relevant check digit needs to be present in the input data and will be verified before
the symbol is generated. In addition EAN-2 and EAN-5 add-on symbols can be added using the + character
as with UPC symbols, and the gap set with - -addongap (API option_2) to between 7 (default) and 12. The
height that the guard bars descend can be adjusted by setting - -guarddescent (API guard_descent) to a value

between 0 and 20 (default 5).

C64

6.1.5 Plessey
6.1.5.1 UK Plessey

Figure 42: zint -b PLESSEY -d "C64"

Also known as Plessey Code, this symbology was developed by the Plessey Company Ltd. in the UK. The
symbol can encode data consisting of digits (0-9) or letters A-F up to a maximum of 65 characters and includes

a CRC check digit.

650291

6.1.5.2 MSI Plessey

Figure 43: zint -b MSI_PLESSEY -d "6502" --vers=2

Based on Plessey and developed by MSE Data Corporation, MSI Plessey has a range of check digit options that
are selectable by setting - -vers (APl option_2). Numeric (digits 0-9) input can be encoded, up to a maximum
of 65 digits. The table below shows the options available:

Table : MSI Plessey Check Digit Options

Value Check Digits

None

Modulo-10 (Luhn)

Modulo-10 & Modulo-10
Modulo-11 (IBM)

Modulo-11 (IBM) & Modulo-10

= W= O

45

Value Check Digits

5 Modulo-11 (NCR)
6 Modulo-11 (NCR) & Modulo-10

To not show the check digit or digits in the Human Readable Text, add 10 to the - -vers value. For example
--vers=12 (APl option_2 = 12) will add two hidden modulo-10 check digits.

Z80

6.1.6 Telepen
6.1.6.1 Telepen Alpha

Figure 44: zint -b TELEPEN --compliantheight -d "z8o"

Telepen Alpha was developed by SB Electronic Systems Limited and can encode ASCII text input, up to a
maximum of 30 characters. Telepen includes a modulo-127 check digit.

466X33

6.1.6.2 Telepen Numeric

Figure 45: zint -b TELEPEN_NUM --compliantheight -d "466X33"

Telepen Numeric allows compression of numeric data into a Telepen symbol. Data can consist of pairs of num-
bers or pairs consisting of a numerical digit followed an X character. For example: 466333 and 466X33 are valid
codes whereas 46X333 is not (the digit pair "X3" is not valid). Up to 60 digits can be encoded. Telepen Numeric
includes a modulo-127 check digit which is added by Zint.

1AB

6.1.7 Code 39
6.1.7.1 Standard Code 39 (ISO 16388)

Figure 46: zint -b CODE39 --compliantheight -d "1A" --vers=1

Standard Code 39 was developed in 1974 by Intermec. Input data can be up to 85 characters in length and can
include the characters 0-9, A-Z, dash (-), full stop (.), space, asterisk (*), dollar ($), slash (/), plus (+) and
percent (%). The standard does not require a check digit but a modulo-43 check digit can be added if required
by setting - -vers=1 (APl option_2 = 1).

6.1.7.2 Extended Code 39

46

123.45fd

Figure 47: zint -b EXCODE39 --compliantheight -d "123.45$@fd"

Also known as Code 39e and Code39+, this symbology expands on Standard Code 39 to provide support for
the full 7-bit ASCII character set. The standard does not require a check digit but a modulo-43 check digit can
be added if required by setting - -vers=1 (APl option_2 = 1).

C93

6.1.7.3 Code 93

Figure 48: zint -b CODE93 --compliantheight -d "C93"

A variation of Extended Code 39, Code 93 also supports full ASCII text. Two check characters are added by

Zint. By default these check characters are not shown in the Human Readable Text, but may be shown by setting
--vers=1 (APl option_2 = 1).

6.1.7.4 PZN (Pharmazentralnummer)

PZN -27580899

Figure 49: zint -b PZN --compliantheight -d "2758089"

PZN is a Code 39 based symbology used by the pharmaceutical industry in Germany. PZN encodes a 7 digit
number to which Zint will add a modulo-11 check digit.

12345/ABCDET

6.1.7.5 LOGMARS

Figure 50: zint -b LOGMARS --compliantheight -d "12345/ABCDE" --vers=1

LOGMARS (Logistics Applications of Automated Marking and Reading Symbols) is a variation of the Code
39 symbology used by the US Department of Defense. LOGMARS encodes the same character set as Standard

Code 39. It does not require a check digit but a modulo-43 check digit can be added by setting - -vers=1 (API
option_2 = 1).

47

6.1.7.6 Code 32

A143523126

Figure 51: zint -b CODE32 --compliantheight -d "14352312"

A variation of Code 39 used by the Italian Ministry of Health (“Ministero della Sanita”) for encoding identifiers
on pharmaceutical products. This symbology requires a numeric input up to 8 digits in length. A check digit

is added by Zint.

+14352312J

6.1.7.7 HIBC Code 39

Figure 52: zint -b HIBC_39 --compliantheight -d "14352312"

This option adds a leading '+' character and a trailing modulo-49 check digit to a standard Code 39 symbol as
required by the Health Industry Barcode standards.

6.1.7.8 Vehicle Identification Number (VIN)

2FTPX28LOXCA15511

Figur653: zint -b VIN -d "2FTPX28LOXCA15511" --vers=1

A variation of Code 39 that for vehicle identification numbers used in North America (first character '1' to
'5') has a check character verification stage. A 17 character input (0-9, and A-Z excluding 'I', '0' and 'Q")
is required. An invisible Import character prefix 'I' can be added by setting - -vers=1 (APl option_2 = 1).

A37859B

6.1.8 Codabar (EN 798)

Figure 54: zint -b CODABAR --compliantheight -d "A37859B"

Also known as NW-7, Monarch, ABC Codabar, USD-4, Ames Code and Code 27, this symbology was developed
in 1972 by Monarch Marketing Systems for retail purposes. The American Blood Commission adopted Codabar
in 1977 as the standard symbology for blood identification. Codabar can encode up to 60 characters starting
and ending with the letters A-D and containing between these letters the numbers 0-9, dash (-), dollar ($),
colon (:), slash (/), full stop (.) or plus (+). No check character is generated by default, but a modulo-16 one
can be added by setting --vers=1 (APl option_2 = 1). To have the check character appear in the Human
Readable Text, set - -vers=2 (APl option_2 = 2).

48

6.1.9 Pharmacode

Figure 55: zint -b PHARMA --compliantheight -d "130170"

Developed by Laetus, Pharmacode is used for the identification of pharmaceuticals. The symbology is able to
encode whole numbers between 3 and 131070.

6.1.10 Code 128
6.1.10.1 Standard Code 128 (ISO 15417)

130170X178

Figure 56: zint -b CODE128 --bind -d "130170X178"

One of the most ubiquitous one-dimensional barcode symbologies, Code 128 was developed in 1981 by Com-
puter Identics. This symbology supports full ASCII text and uses a three-mode system to compress the data
into a smaller symbol. Zint automatically switches between modes and adds a modulo-103 check digit. Code
128 is the default barcode symbology used by Zint. In addition Zint supports the encoding of ISO/IEC 8859-1
(non-English) characters in Code 128 symbols. The ISO/IEC 8859-1 character set is shown in Appendix A.2
Latin Alphabet No. 1 (ISO/IEC 8859-1).

130170X178

6.1.10.2 Code 128 Subset B

Figure 57: zint -b CODE128B -d "130170X178"

It is sometimes advantageous to stop Code 128 from using subset mode C which compresses numerical data.
The BARCODE_CODE128B option (symbology 60) suppresses mode C in favour of mode B.

(01)98898765432106(3202)012345(15)991231

6.1.10.3 GS1-128

Figure 58: zint -b GS1_128 --compliantheight -d "[01]98898765432106[3202]012345[15]991231"

A variation of Code 128 previously known as UCC/EAN-128, this symbology is defined by the GS1 General
Specifications. Application Identifiers (Als) should be entered using [square bracket] notation. These will be

49

converted to parentheses (round brackets) for the Human Readable Text. This will allow round brackets to be
used in the data strings to be encoded.

For compatibility with data entry in other systems, if the data does not include round brackets, the option
--gsiparens (API input_mode |= GS1PARENS_MODE) may be used to signal that Als are encased in round
brackets instead of square ones.

Fixed length data should be entered at the appropriate length for correct encoding. G51-128 does not support
extended ASCII characters. Check digits for GTIN data AI (01) are not generated and need to be included in
the input data. The following is an example of a valid GS1-128 input:

zint -b 16 -d "[01]98898765432106[3202]012345[15]991231"

or using the --gsiparens option:
zint -b 16 --gsilparens -d "(01)98898765432106(3202)012345(15)991231"

(01)98898765432106

6.1.10.4 EAN-14

Figure 59: zint -b EAN14 --compliantheight -d "9889876543210"

A shorter version of GS51-128 which encodes GTIN data only. A 13 digit number is required. The GTIN check
digit and Al (01) are added by Zint.

(00)376123450000010039

6.1.10.5 NVE-18 (SSCC-18)

Figure 60: zint -b NVE18 --compliantheight -d "37612345000001003"

A variation of Code 128 the ‘Nummer der Versandeinheit’standard, also known as SSCC-18 (Serial Shipping
Container Code), includes both modulo-10 and modulo-103 check digits. NVE-18 requires a 17 digit numerical
input. Check digits and Al (00) are added by Zint.

+A123BJC5D6E71G

6.1.10.6 HIBC Code 128

Figure 61: zint -b HIBC_128 -d "A123BJC5D6E71"

This option adds a leading '+' character and a trailing modulo-49 check digit to a standard Code 128 symbol
as required by the Health Industry Barcode standards.

50

6.1.10.7 DPD Code

0003 932 06219912 3456 78 101 040 9

Figure 62: zint -b DPD --compliantheight -d "%000393206219912345678101040"

Another variation of Code 128 as used by DPD (Deutsher Paket Dienst). Requires a 28 character alphanumeric
input. Zint formats Human Readable Text as specified by DPD and adds a modulo-36 check character.
6.1.11 GS1 DataBar (ISO 24724)

Previously known as RSS (Reduced Spaced Symbology) these symbols are due to replace G51-128 symbols in
accordance with the GS1 General Specifications. If a G51 DataBar symbol is to be printed with a 2D component
as specified in ISO/IEC 24723 set - -mode=2 (APl option_1 = 2). See 6.3 Composite Symbols (ISO 24723) to
find out how to generate DataBar symbols with 2D components.

6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated

(01)09501101530010

Figure 63: zint -b DBAR_OMN --compliantheight -d "0950110153001"

Previously known as RSS5-14 this standard encodes a 13 digit item code. A check digit and Application Identifier
of (01) are added by Zint. (A 14 digit code that appends the check digit may be given, in which case the
check digit will be verified.) To produce a truncated symbol set the symbol height to a value between 13 and
32. Truncated symbols may not be scannable by omnidirectional scanners. Normal DataBar Omnidirectional
symbols should have a height of 33 or greater.

L (TR T
(01)09501101530010

Figure 64: zint -b DBAR_OMN -d "0950110153001" --height=13

6.1.11.2 GS1 DataBar Limited

(01)09501101530010

Figure 65: zint -b DBAR_LTD --compliantheight -d "0950110153001"

Previously known as RSS Limited this standard encodes a 13 digit item code and can be used in the same way
as DataBar Omnidirectional above. DataBar Limited, however, is limited to data starting with digits 0 and 1
(i.e. numbers in the range 0 to 1999999999999). As with DataBar Omnidirectional a check digit and Application
Identifier of (01) are added by Zint, and a 14 digit code may be given in which case the check digit will be
verified.

51

6.1.11.3 GS1 DataBar Expanded

(01)98898765432106(3202)012345(15)991231

Figure 66: zint -b DBAR_EXP --compliantheight -d "[01]98898765432106[3202]012345[15]991231"

Previously known as RSS Expanded this is a variable length symbology capable of encoding data from a number
of Als in a single symbol. Als should be encased in [square brackets] in the input data. This will be converted
to parentheses (round brackets) before it is included in the Human Readable Text attached to the symbol. This
method allows the inclusion of parentheses in the data to be encoded. If the data does not include parentheses,
the Als may alternatively be encased in parentheses using the - -gsiparens switch. See 6.1.10.3 GS1-128.

GTIN data AI (01) should also include the check digit data as this is not calculated by Zint when this symbology
is encoded. Fixed length data should be entered at the appropriate length for correct encoding. The following
is an example of a valid DataBar Expanded input:

zint -b 31 -d "[01]98898765432106[3202]012345[15]991231"

9234570

6.1.12 Korea Post Barcode

Figure 67: zint -b KOREAPOST -d '"923457"

The Korean Postal Barcode is used to encode a six-digit number and includes one check digit.

453678

6.1.13 Channel Code

Figure 68: zint -b CHANNEL -d "453678" --compliantheight

A highly compressed symbol for numeric data. The number of channels in the symbol can be between 3 and 8
and this can be specified by setting the value of the - -vers option (API option_2). It can also be determined
by the length of the input data e.g. a three character input string generates a 4 channel code by default.

The maximum values permitted depend on the number of channels used as shown in the table below:

Table : Channel Maximum Values

Channels Minimum Value Maximum Value

3 00 26

4 000 292

5 0000 3493

6 00000 44072

7 000000 576688
8 0000000 7742862

52

6.2 Stacked Symbologies
6.2.1 Basic Symbol Stacking

An early innovation to get more information into a symbol, used primarily in the vehicle industry, is to simply
stack one-dimensional codes on top of each other. This can be achieved at the command prompt by giving more
than one set of input data. For example

zint -d "This" -d "That"

will draw two Code 128 symbols, one on top of the other. The same result can be achieved using the API by
executing the zBarcode_Encode () function more than once on a symbol. For example:

my_symbol->symbology = BARCODE_CODE128;
error = ZBarcode_Encode(my_symbol, "This'", 0);

error = ZBarcode_Encode(my_symbol, "That", 0);

That
Figure 69: zint -d "This" -d "That"

error = ZBarcode_Print(my_symbol);

Note that the Human Readable Text will be that of the last data, so it’s best to use the option - -notext (API
show_hrt = 0).

The stacked barcode rows can be separated by row separator bars by specifying - -bind (APl output_options
| = BARCODE_BIND). The height of the row separator bars in multiples of the X-dimension (minimum and default
1, maximum 4) can be set by - -separator (APl option_3):

zint --bind --notext --separator=2 -d "This" -d "That"

Figure 70: zint --notext --bind --separator=2 -d "This" -d "That"

A more sophisticated method is to use some type of line indexing which indicates to the barcode reader which
order the symbols should be read. This is demonstrated by the symbologies below.

6.2.2 Codablock-F

Figure 71: zint -b CODABLOCKF -d "CODABLOCK F Symbology" --rows=3

This is a stacked symbology based on Code 128 which can encode extended ASCII code set data up to a maxi-
mum length of 2725 characters. The width of the Codablock-F symbol can be set using the - -cols option (API
option_2). The height (number of rows) can be set using the - -rows option (API option_1). Zint does not
currently support encoding of GS1 data in Codablock-F symbols.

53

A separate symbology ID (BARCODE_HIBC_BLOCKF) can be used to encode Health Industry Barcode (HIBC)
data which adds a leading '+' character and a modulo-49 check digit to the encoded data.

:M |I Illlﬂl

Figure 72: zint -b CODE16K --compliantheight -d "ab0123456789"

6.2.3 Code 16K (EN 12323)

Code 16K uses a Code 128 based system which can stack up to 16 rows in a block. This gives a maximum
data capacity of 77 characters or 154 numerical digits and includes two modulo-107 check digits. Code 16K
also supports extended ASCII character encoding in the same manner as Code 128. GS1 data encoding is also
supported. The minimum number of rows to use can be set using the - -rows option (API option_1), with
values from 2 to 16.

6.2.4 PDF417 (I1SO 15438)

[srelbVisd |

Figure 73: zint -b PDF417 -d "PDF417"

Heavily used in the parcel industry, the PDF417 symbology can encode a vast amount of data into a small
space. Zint supports encoding up to the ISO standard maximum symbol size of 925 codewords which (at error
correction level 0) allows a maximum data size of 1850 text characters, or 2710 digits.

The width of the generated PDF417 symbol can be specified at the command line using the --cols switch
(API option_2) followed by a number between 1 and 30, the number of rows using the --rows switch (API
option_3) followed by a number between 3 and 90, and the amount of error correction information can be
specified by using the --secure switch (API option_1) followed by a number between 0 and 8 where the
number of codewords used for error correction is determined by 2/ (value + 1). The default level of error
correction is determined by the amount of data being encoded.

This symbology uses Latin-1 character encoding by default but also supports the ECI encoding mechanism. A
separate symbology ID (BARCODE_HIBC_PDF) can be used to encode Health Industry Barcode (HIBC) data.

PDF417 supports Structured Append of up to 99,999 symbols and an optional numeric ID of up to 30 digits,
which can be set by using the --structapp option (see 4.16 Structured Append) (API structapp). The ID
consists of up to 10 triplets, each ranging from "000" to "899". For instance "123456789" would be a valid ID
of 3 triplets. However "123456900" would not, as the last triplet "900" exceeds "899". The triplets are 0-filled,
for instance "1234" becomes "123004". If an ID is not given, no ID is encoded.

[lselhy

Figure 74: zint -b PDF417COMP -d "PDF417"

6.2.5 Compact PDF417 (ISO 15438)

Previously known as Truncated PDF417, Compact PDF417 omits some per-row overhead to produce a narrower
but less robust symbol. Options are the same as for PDF417 above.

et

Figure 75: zint -b MICROPDF417 -d "12345678"

6.2.6 MicroPDF417 (ISO 24728)

54

A variation of the PDF417 standard, MicroPDF417 is intended for applications where symbol size needs to
be kept to a minimum. 34 predefined symbol sizes are available with 1 - 4 columns and 4 - 44 rows. The
maximum size a MicroPDF417 symbol can hold is 250 alphanumeric characters or 366 digits. The amount of
error correction used is dependent on symbol size. The number of columns used can be determined using the
--cols switch (API option_2) as with PDF417.

This symbology uses Latin-1 character encoding by default but also supports the ECI encoding mechanism. A
separate symbology ID (BARCODE_HIBC_MICPDF) can be used to encode Health Industry Barcode (HIBC) data.
MicroPDF417 supports Structured Append the same as PDF417, for which see details.
6.2.7 GS1 DataBar Stacked (ISO 24724)
6.2.7.1 GS1 DataBar Stacked

|]

™ sin

Figure 76: zint -b DBAR_STK --compliantheight -d "9889876543210"

A stacked variation of the GS1 DataBar Truncated symbol requiring the same input (see 6.1.11.1 GS1 DataBar
Omnidirectional and GS1 DataBar Truncated), this symbol is the same as the following DataBar Stacked Om-
nidirectional symbol except that its height is reduced, making it suitable for small items when omnidirectional
scanning is not required. It can be generated with a two-dimensional component to make a composite symbol.

6.2.7.2 GS1 DataBar Stacked Omnidirectional

Figure 77: zint -b DBAR_OMNSTK --compliantheight -d "9889876543210"

A stacked variation of the GS1 DataBar Omnidirectional symbol requiring the same input (see 6.1.11.1 GS1
DataBar Omnidirectional and GS1 DataBar Truncated). The data is encoded in two rows of bars with a central
finder pattern. This symbol can be generated with a two-dimensional component to make a composite symbol.

6.2.7.3 GS1 DataBar Expanded Stacked

Figure 78: zint -b DBAR_EXPSTK --compliantheight -d "[01]98898765432106[3202]012345[15]991231"

A stacked variation of the GS1 DataBar Expanded symbol for smaller packages. Input is the same as for GS1
DataBar Expanded (see 6.1.11.3 GS1 DataBar Expanded). In addition the width of the symbol can be altered
using the --cols switch (API option_2). In this case the number of columns (values 1 to 11) relates to the
number of character pairs on each row of the symbol. Alternatively the - - rows switch (APl option_3) can be
used to specify the maximum number of rows (values 2 to 11), and the number of columns will be adjusted
accordingly. This symbol can be generated with a two-dimensional component to make a composite symbol.
For symbols with a 2D component the number of columns must be at least 2.

55

6.2.8 Code 49

Figure 79: zint -b CODE49 --compliantheight -d "MULTIPLE ROWS IN CODE 49"

Developed in 1987 at Intermec, Code 49 is a cross between UPC and Code 39. It is one of the earliest stacked
symbologies and influenced the design of Code 16K a few years later. It supports full 7-bit ASCII input up to a
maximum of 49 characters or 81 numeric digits. GS1 data encoding is also supported. The minimum number
of rows to use can be set using the - -rows option (API option_1), with values from 2 to 8.

56

6.3 Composite Symbols (ISO 24723)

Composite symbols employ a mixture of components to give more comprehensive information about a product.
The permissible contents of a composite symbol is determined by the terms of the GS1 General Specifications.
Composite symbols consist of a linear component which can be an EAN, UPC, G51-128 or GS1 DataBar symbol,
a 2D component which is based on PDF417 or MicroPDF417, and a separator pattern. The type of linear com-
ponent to be used is determined using the -b or - -barcode switch (API symbology) as with other encoding
methods. Valid values are shown below.

Table : Composite Symbology Values

Numeric

Value Name Barcode Name

130 BARCODE_EANX_CC Composite Symbol with EAN linear component

131 BARCODE_GS1_128_CC Composite Symbol with GS1-128 linear component

132 BARCODE_DBAR_OMN_CC Composite Symbol with GS1 DataBar Omnidirectional
linear component

133 BARCODE_DBAR_LTD_CC Composite Symbol with GS1 DataBar Limited linear
component

134 BARCODE_DBAR_EXP_CC Composite Symbol with GS1 DataBar Expanded linear
component

135 BARCODE_UPCA_CC Composite Symbol with UPC-A linear component

136 BARCODE_UPCE_CC Composite Symbol with UPC-E linear component

137 BARCODE_DBAR_STK_CC Composite Symbol with GS1 DataBar Stacked component

138 BARCODE_DBAR_OMNSTK_CC Composite Symbol with GS1 DataBar Stacked
Omnidirectional component

139 BARCODE_DBAR_EXPSTK_CC Composite Symbol with GS1 DataBar Expanded Stacked
component

The data to be encoded in the linear component of a composite symbol should be entered into a primary string
with the data for the 2D component being entered in the normal way. To do this at the command prompt use
the - -primary switch (API primary). For example:

zint -b EANX_CC --mode=1 --primary=331234567890 -d "[99]1234-abcd"

This creates an EAN-13 linear component with the data "331234567890" and a 2D CC-A (see below) compo-
nent with the data " (99)1234-abcd". The same results can be achieved using the API as shown below:

my_symbol->symbology = BARCODE_EANX_CC;

my_symbol->option_1 = 1;

strcpy(my_symbol->primary, '331234567890");
ZBarcode_Encode_and_Print(my_symbol, "[99]1234-abcd", 0, 0);

EAN-2 and EAN-5 add-on data can be used with EAN and UPC symbols using the + symbol as described in
sections 6.1.3 Universal Product Code (ISO 15420) and 6.1.4 European Article Number (ISO 15420).

The 2D component of a composite symbol can use one of three systems: CC-A, CC-B and CC-C, as described
below. The 2D component type can be selected automatically by Zint dependent on the length of the input
string. Alternatively the three methods can be accessed using the - -mode prompt (API option_1) followed by
1,2 or 3 for CC-A, CC-B or CC-C respectively.

57

6.3.1 CC-A

TIFRANTILy al FLP SR A L]

51678903

Figure 80: zint -b EANX_CC --compliantheight -d "[99]1234-abcd" --mode=1 --primary=331234567890

3 131234

This system uses a variation of MicroPDF417 which is optimised to fit into a small space. The size of the 2D
component and the amount of error correction is determined by the amount of data to be encoded and the type
of linear component which is being used. CC-A can encode up to 56 numeric digits or an alphanumeric string
of shorter length. To select CC-A use - -mode=1 (APIoption_1 = 1).

6.3.2 CC-B

RLTRERGIMR b33N

3 1312345 " 678903

Figure 81: zint -b EANX_CC --compliantheight -d "[99]1234-abcd" --mode=2 --primary=331234567890

This system uses MicroPDF417 to encode the 2D component. The size of the 2D component and the amount of
error correction is determined by the amount of data to be encoded and the type of linear component which is
being used. CC-B can encode up to 338 numeric digits or an alphanumeric string of shorter length. To select
CC-B use --mode=2 (APl option_1 = 2).

6.3.3 CC-C
l 1 II |) I
Wi, DT [l MR
(01)03312345678903
Figure 82: zint -b GS1.128 CC --compliantheight -d "[99]1234-abcd" --mode=3 --

primary="[01]03312345678903"

This system uses PDF417 and can only be used in conjunction with a GS1-128 linear component. CC-C can
encode up to 2361 numeric digits or an alphanumeric string of shorter length. To select CC-C use - -mode=3
(APIoption_1 = 3).

58

6.4 Two-Track Symbols
6.4.1 Two-Track Pharmacode

Figure 83: zint -b PHARMA_TWO --compliantheight -d "29876543"

Developed by Laetus, Pharmacode Two-Track is an alternative system to Pharmacode One-Track (see 6.1.9
Pharmacode) used for the identification of pharmaceuticals. The symbology is able to encode whole numbers
between 4 and 64570080.

6.4.2 POSTNET

Figure 84: zint -b POSTNET --compliantheight -d "12345678901"

Used by the United States Postal Service until 2009, the POSTNET barcode was used for encoding zip-codes on
mail items. POSTNET uses numerical input data and includes a modulo-10 check digit. While Zint will encode
POSTNET symbols of up to 38 digits in length, standard lengths as used by USPS were PostNet6 (5 digit ZIP
input), PostNet10 (5 digit ZIP + 4 digit user data) and PostNet12 (5 digit ZIP + 6 digit user data).

6.4.3 PLANET

Figure 85: zint -b PLANET --compliantheight -d "4012345235636"

Used by the United States Postal Service until 2009, the PLANET (Postal Alpha Numeric Encoding Technique)
barcode was used for encoding routing data on mail items. PLANET uses numerical input data and includes a
modulo-10 check digit. While Zint will encode PLANET symbols of up to 38 digits in length, standard lengths
used by USPS were Planet12 (11 digit input) and Planet14 (13 digit input).

59

6.5 4-State Postal Codes
6.5.1 Australia Post 4-State Symbols

6.5.1.1 Customer Barcodes

Figure 86: zint -b AUSPOST --compliantheight -d '"96184209"

Australia Post Standard Customer Barcode, Customer Barcode 2 and Customer Barcode 3 are 37-bar, 52-bar
and 67-bar specifications respectively, developed by Australia Post for printing Delivery Point ID (DPID) and
customer information on mail items. Valid data characters are 0-9, A-Z, a-z, space and hash (#). A Format Con-
trol Code (FCC) is added by Zint and should not be included in the input data. Reed-Solomon error correction
data is generated by Zint. Encoding behaviour is determined by the length of the input data according to the
formula shown in the following table:

Table : Australia Post Input Formats

Input Symbol Encoding
Length Required Input Format Length FCC Table

8 99999999 37-bar 11 None

13 99999999AAAAA 52-bar 59 C

16 9999999999999999 52-bar 59 N

18 99999999AAAAAAAAAA 67-bar 62 C

23 99999999999999999999999 67-bar 62 N

6.5.1.2 Reply Paid Barcode

Figure 87: zint -b AUSREPLY --compliantheight -d "12345678"

A Reply Paid version of the Australia Post 4-State Barcode (FCC 45) which requires an 8-digit DPID input.

6.5.1.3 Routing Barcode

Figure 88: zint -b AUSROUTE --compliantheight -d '"34567890"

A Routing version of the Australia Post 4-State Barcode (FCC 87) which requires an 8-digit DPID input.

6.5.1.4 Redirect Barcode

Figure 89: zint -b AUSREDIRECT --compliantheight -d "98765432"

A Redirection version of the Australia Post 4-State Barcode (FCC 92) which requires an 8-digit DPID input.

6.5.2 Dutch Post KIX Code

Figure 90: zint -b KIX --compliantheight -d "2500GG30250"

60

This symbology is used by Royal Dutch TPG Post (Netherlands) for Postal code and automatic mail sorting.
Data input can consist of numbers 0-9 and letters A-Z and needs to be 11 characters in length. No check digit
is included.

6.5.3 Royal Mail 4-State Customer Code (RM4SCC)

Figure 91: zint -b RM4SCC --compliantheight -d "W1JOTRO1"

The RM4SCC standard is used by the Royal Mail in the UK to encode postcode and customer data on mail
items. Data input can consist of numbers 0-9 and letters A-Z and usually includes delivery postcode followed
by house number. For example "w1J0TRO1" for 1 Piccadilly Circus in London. Check digit data is generated by
Zint.

6.5.4 Royal Mail 4-State Mailmark

Figure 92: zint -b MAILMARK --compliantheight -d "1100000000000XY11"

Developed in 2014 as a replacement for RM4SCC this 4-state symbol includes Reed Solomon error correction.
Input is a pre-formatted alphanumeric string of 22 (for Barcode C) or 26 (for Barcode L) characters, producing
a symbol with 66 or 78 bars respectively. Some of the permitted inputs include a number of trailing space
characters - these will be appended by Zint if not included in the input data.

6.5.5 USPS Intelligent Mail

Figure 93: zint -b USPS_IMAIL --compliantheight -d "01234567094987654321-01234"

Also known as the OneCode barcode and used in the US by the United States Postal Service (USPS), the Intel-
ligent Mail system replaced the POSTNET and PLANET symbologies in 2009. Intelligent Mail is a fixed length
(65-bar) symbol which combines routing and customer information in a single symbol. Input data consists of
a 20 digit tracking code, followed by a dash (-), followed by a delivery point zip-code which can be 0, 5, 9 or
11 digits in length. For example all of the following inputs are valid data entries:

"01234567094987654321"
"01234567094987654321-01234"
"01234567094987654321-012345678"

"01234567094987654321-01234567891"

6.5.6 Japanese Postal Code

Iﬁgure94:zint -b JAPANPOST --compliantheight -d "15400233-16-4-205"

Used for address data on mail items for Japan Post. Accepted values are 0-9, A-Z and dash (-). A modulo 19
check digit is added by Zint.

61

6.6 Two-Dimensional Matrix Symbols

6.6.1 Data Matrix (ISO 16022)

Figure 95: zint -b HIBC_DM -d "/ACMRN123456/V200912190833" --fast --square

Also known as Semacode this symbology was developed in 1989 by Acuity CiMatrix in partnership with the US
DoD and NASA. The symbol can encode a large amount of data in a small area. Data Matrix encodes characters
in the Latin-1 set by default but also supports encoding in other character sets using the ECI mechanism. It can
also encode GS1 data. The size of the generated symbol can also be adjusted using the --vers option (API
option_2) as shown in the table below. A separate symbology ID (BARCODE_HIBC_DM) can be used to encode
Health Industry Barcode (HIBC) data. Note that only ECC200 encoding is supported, the older standards have

now been removed from Zint.

Table : Data Matrix Sizes

Input Symbol Size Input Symbol Size Input Symbol Size
1 10x 10 11 36 x 36 21 104 x 104
2 12x 12 12 40 x 40 22 120 x 120
3 14x 14 13 44 x 44 23 132 x 132
4 16 x 16 14 48 x 48 24 144 x 144
5 18 x 18 15 52 x 52 25 8x18

6 20 x 20 16 64 x 64 26 8x32

7 22x22 17 72x72 28 12x26

8 24 x 24 18 80 x 80 28 12 x 36

9 26 x 26 19 88 x 88 29 16 x 36
10 32x32 20 96 x 96 30 16 x 48

When using automatic symbol sizes you can force Zint to use square symbols (versions 1-24) at the command
line by using the option - -square (APl option_3 = DM_SQUARE).

Data Matrix Rectangular Extension (ISO/IEC 21471) codes may be generated with the following values as

before:

Table : DMRE Sizes

Input Symbol Size Input Symbol Size
31 8 x 48 40 20 x 36
32 8 x 64 41 20 x 44
33 8x 80 42 20 x 64
34 8x96 43 22 x 48
35 8x 120 44 24 x 48
36 8x 144 45 24 x 64
37 12 x 64 46 26 x 40
38 12 x 88 47 26 x 48
39 16 x 64 48 26 x 64

DMRE symbol sizes may be activated in automatic size mode using the option --dmre (API option_3

DM_DMRE).

GS1 data may be encoded using FNC1 (default) or GS as separator. Use the option - -gssep to change to GS

(API output_options |= GS1_GS_SEPARATOR).

For a faster but less optimal encoding, the - - fast option (API input_mode |= FAST_MODE) may be used.

62

Data Matrix supports Structured Append of up to 16 symbols and a numeric ID (file identifications), which
can be set by using the --structapp option (see 4.16 Structured Append) (API structapp). The ID consists
of 2 numbers ID1 and ID2, each of which can range from 1 to 254, and is specified as the single number ID1 *
1000 + ID2, so for instance ID1 "123" and ID2 "234" would be given as "123234". Note that both ID1 and
ID2 must be non-zero, so e.g. "123000" or "000123" would be invalid IDs. If an ID is not given it defaults to
"001001".

6.6.2 QR Code (ISO 18004)
w10

Figure 96: zint -b QRCODE -d "QR Code Symbol" --mask=5
Also known as Quick Response Code this symbology was developed by Denso. Four levels of error correction

are available using the - -secure option (API option_1) as shown in the following table.

Table : QR Code ECC Levels

Input ECC Level Error Correction Capacity Recovery Capacity

1 L Approx 20% of symbol Approx 7%

2 M Approx 37% of symbol Approx 15%
3 Q Approx 55% of symbol Approx 25%
4 H Approx 65% of symbol Approx 30%

The size of the symbol can be specified by setting the - -vers option (API option_2) to the QR Code version
required (1-40). The size of symbol generated is shown in the table below.

Table : QR Code Sizes

Input Symbol Size Input Symbol Size Input Symbol Size

1 21x21 15 77 x77 29 133 x 133
2 25x 25 16 81 x 81 30 137 x 137
3 29x29 17 85x 85 31 141 x 141
4 33 x33 18 89 x 89 32 145 x 145
5 37 x 37 19 93 x 93 33 149 x 149
6 41 x 41 20 97 x 97 34 153 x 153
7 45 x 45 21 101 x 101 35 157 x 157
8 49 x 49 22 105 x 105 36 161 x 161
9 53 x 53 23 109 x 109 37 165 x 165
10 57 x 57 24 113x 113 38 169 x 169
11 61 x 61 25 117 x 117 39 173 x 173
12 65 x 65 26 121 x 121 40 177 x 177
13 69 x 69 27 125x 125

14 73x73 28 129 x 129

The maximum capacity of a QR Code symbol (version 40) is 7089 numeric digits, 4296 alphanumeric characters
or 2953 bytes of data. QR Code symbols can also be used to encode GS1 data. QR Code symbols can by default
encode either characters in the Latin-1 set or Kanji, Katakana and ASCII characters which are members of the
Shift JIS encoding scheme. In addition QR Code supports other character sets using the ECI mechanism. Input
should usually be entered as UTF-8 with conversion to Latin-1 or Shift JIS being carried out by Zint. A separate
symbology ID (BARCODE_HIBC_QR) can be used to encode Health Industry Barcode (HIBC) data.

Non-ASCII data density may be maximized by using the --fullmultibyte switch (API option_3 =
ZINT_FULL_MULTIBYTE), but check that your barcode reader supports this before using.

63

QR Code has eight different masks designed to minimize unwanted patterns. The best mask to use is selected
automatically by Zint but may be manually specified by using the - -mask switch with values 0-7, or in the API
by setting option_3 = (N + 1) << 8 where N is 0-7. To use with ZINT_FULL_MULTIBYTE set

option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8

QR Code supports Structured Append of up to 16 symbols and a numeric ID (parity), which can be set by
using the - -structapp option (see 4.16 Structured Append) (API structapp). The parity ID ranges from 0
(default) to 255, and for full compliance should be set to the value obtained by XOR-ing together each byte of
the complete data forming the sequence. Currently this calculation must be done outside of Zint.

o

Figure 97: zint -b MICROQR -d "01234567"

6.6.3 Micro QR Code (ISO 18004)

A miniature version of the QR Code symbol for short messages, Micro QR Code symbols can encode either
Latin-1 characters or Shift JIS characters. Input should be entered as a UTF-8 stream with conversion to Latin-1
or Shift JIS being carried out automatically by Zint. A preferred symbol size can be selected by using the - -vers
option (API option_2), as shown in the table below. Note that versions M1 and M2 have restrictions on what
characters can be encoded.

Table : Micro QR Code Sizes

Input Version Symbol Size Allowed Characters

1 M1 11x11 Numeric only

2 M2 13x 13 Numeric, uppercase letters, space, and the
characters "$%*+-./:"

3 M3 15x15 Latin-1 and Shift JIS

4 M4 17 x 17 Latin-1 and Shift JIS

Except for version M1, which is always ECC level L, the amount of ECC codewords can be adjusted using the
--secure option (API option_1); however ECC level H is not available for any version, and ECC level Q is
only available for version M4:

Available for
Input ECC Level Error Correction Capacity Recovery Capacity =~ Versions
1 L Approx 20% of symbol Approx 7% M1, M2, M3, M4
2 M Approx 37% of symbol Approx 15% M2, M3, M4
3 Q Approx 55% of symbol Approx 25% M4

The defaults for symbol size and ECC level depend on the input and whether either of them is specified.

For barcode readers that support it, non-ASCII data density may be maximized by using the - -fullmultibyte
switch (APIoption_3 = ZINT_FULL_MULTIBYTE).

Micro QR Code has four different masks designed to minimize unwanted patterns. The best mask to use is
selected automatically by Zint but may be manually specified by using the - -mask switch with values 0-3, or in
the API by setting option_3 = (N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set

option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8

64

6.6.4 Rectangular Micro QR Code (rMQR)

L

Figure 98: zint -b RMQR -d "0123456"

A rectangular version of QR Code, it is still under development, so it is recommended it should not yet be
used for a production environment. Like QR Code, rMQR supports encoding of GS1 data, and either Latin-1
characters or Shift JIS characters, and other encodings using the ECI mechanism. As with other symbologies
data should be entered as UTF-8 with conversion being handled by Zint. The amount of ECC codewords can
be adjusted using the - -secure option (API option_1), however only ECC levels M and H are valid for this
type of symbol.

Table : rMQR ECC Levels

Input ECC Level Error Correction Capacity Recovery Capacity

2 M Approx 37% of symbol Approx 15%
4 H Approx 65% of symbol Approx 30%

The preferred symbol sizes can be selected using the - -vers option (APl option_2) as shown in the table below.
Input values between 33 and 38 fix the height of the symbol while allowing Zint to determine the minimum
symbol width.

Table : rMQR Sizes

Input Version Symbol Size (HxW) Input Version Symbol Size (HxW)

1 R7x43 7x73 20 R13x77 13 x77

2 R7x59 7 x 59 21 R13x99 13 x99

3 R7x77 7x77 22 R13x139 13 x139

4 R7x99 7 x99 23 R15x43 15x43

5 R7x139 7x139 24 R15x59 15x59

6 R9x43 9x43 25 R15x77 15x77

7 R9x59 9x59 26 R15x99 15x99

8 R9x77 9x77 27 R15x139 15x139

9 R9x99 9x99 28 R17x43 17 x 43

10 R9x139 9x139 29 R17x59 17 x59

11 R11x27 11x27 30 R17x77 17 x77

12 R11x43 11x43 31 R17x99 17 x99

13 R11x59 11 x59 32 R17x139 17 x 139

14 R11x77 11x77 33 R7xW 7 x automatic width
15 R11x99 11x99 34 RIOXW 9 x automatic width
16 R11x139 11x139 35 R11xW 11 x automatic width
17 R13x27 13 x 27 36 R13xW 13 x automatic width
18 R13x43 13x43 37 R15xW 15 x automatic width
19 R13x59 13 x 59 38 R17xW 17 x automatic width

For barcode readers that support it, non-ASCII data density may be maximized by using the - -fullmultibyte
switch or in the API by setting option_3 = ZINT_FULL_MULTIBYTE.

65

6.6.5 UPNQR (Univerzalnega Plac¢ilnega Naloga QR)

Figure 99: zint -b UPNQR -i upn_utf8.txt --quietzones

A variation of QR Code used by ZdruZenje Bank Slovenije (Bank Association of Slovenia). The size, error
correction level and ECI are set by Zint and do not need to be specified. UPNQR is unusual in that it uses
Latin-2 (ISO/IEC 8859-2 plus ASCII) formatted data. Zint will accept UTF-8 data and convert it to Latin-2, or
if your data is already Latin-2 formatted use the - -binary switch (API input_mode = DATA MODE).

The following example creates a symbol from data saved as a Latin-2 file:

zint -o upngr.png -b 143 --scale=3 --binary -i upn.txt

6.6.6 MaxiCode (ISO 16023)

SN
a‘;c,;x‘?.,;zf-,a N
O %

Pﬁgure 100: zint -b MAXICODE -d "1Z00004951\GUPSN\GO6X610\G159\G1234567\G1/1\G\GY\G1 MAIN
ST\GNY\GNY\R\E" --esc --primary="152382802000000" --scmvv=96

YL

$
{

Developed by UPS the MaxiCode symbology employs a grid of hexagons surrounding a bulls-eye finder pat-
tern. This symbology is designed for the identification of parcels. MaxiCode symbols can be encoded in one of
five modes. In modes 2 and 3 MaxiCode symbols are composed of two parts named the primary and secondary
messages. The primary message consists of a Structured Carrier Message which includes various data about
the package being sent and the secondary message usually consists of address data in a data structure. The
format of the primary message required by Zint is given in the following table:

Table : MaxiCode Structured Carrier Message Format

Characters Meaning

1-9 Postcode data which can consist of up to 9 digits (for mode 2)
or up to 6 alphanumeric characters (for mode 3). Remaining
unused characters can be filled with the SPACE character
(ASCII 32) or omitted (if omitted adjust the following
character positions).

10-12 Three digit country code according to ISO 3166-1.

13-15 Three digit service code. This depends on your parcel courier.

The primary message can be set at the command prompt using the --primary switch (API primary). The
secondary message uses the normal data entry method. For example:

66

zint -0 test.eps -b 57 --primary="999999999840012" \
-d "Secondary Message Here"

When using the API the primary message must be placed in the primary string. The secondary is entered in
the same way as described in 5.2 Encoding and Saving to File. When either of these modes is selected Zint will
analyse the primary message and select either mode 2 or mode 3 as appropriate.

As a convenience the secondary message for modes 2 and 3 can be set to be prefixed by the ISO/IEC 15434
Format "01" (transportation) sequence "[)>\R01\Gvv", where vv is a 2-digit version, by using the --scmvv
switch (APToption_2 = vv + 1). For example to use the common version "96" (ASC MH10/SC 8):

zint -b 57 --primary="152382802840001" --scmvv=96 --esc -d \
"1Z00004951\GUPSN\GO6X610\G159\G1234567\G1/1\G\GY\G1 MAIN ST\GNY\GNY\R\E"

will prefix "[)>\R01\696" to the secondary message. (\R, \G and \E are the escape sequences for Record
Separator, Group Separator and End of Transmission respectively - see Table : Escape Sequences.)

Modes 4 to 6 can be accessed using the - -mode switch (API option_1). Modes 4 to 6 do not have a primary
message. For example:

zint -0 test.eps -b 57 --mode=4 -d "A MaxiCode Message in Mode 4"

Mode 6 is reserved for the maintenance of scanner hardware and should not be used to encode user data.

This symbology uses Latin-1 character encoding by default but also supports the ECI encoding mechanism.
The maximum length of text which can be placed in a MaxiCode symbol depends on the type of characters
used in the text.

Example maximum data lengths are given in the table below:

Table : MaxiCode Data Length Maxima

Maximum Data Length for Maximum Data Length for Number of Error Correction
Mode Capital Letters Numeric Digits Codewords
2% 84 126 50
3* 84 126 50
4 93 138 50
5 77 113 66
6 93 138 50

* - secondary only

MaxiCode supports Structured Append of up to 8 symbols, which can be set by using the - -structapp option
(see 4.16 Structured Append) (API structapp). It does not support specifying an ID.

MaxiCode uses a different scaling than other symbols for raster output, see 4.9.2 MaxiCode Raster Scaling, and
also for EMF vector output, when the scale is multiplied by 20 instead of 2.

6.6.7 Aztec Code (ISO 24778)

wll

[5]

r-f

Figure 101: zint -b AZTEC -d "123456789012"

Invented by Andrew Longacre at Welch Allyn Inc in 1995 the Aztec Code symbol is a matrix symbol with
a distinctive bulls-eye finder pattern. Zint can generate Compact Aztec Code (sometimes called Small Aztec
Code) as well as * full-range ' Aztec Code symbols and by default will automatically select symbol type and size
dependent on the length of the data to be encoded. Error correction codewords will normally be generated to
fill at least 23% of the symbol. Two options are available to change this behaviour:

The size of the symbol can be specified using the - -vers option (APl option_2) to a value between 1 and 36
according to the following table. The symbols marked with an asterisk (*) in the table below are ‘compact’

67

symbols, meaning they have a smaller bulls-eye pattern at the centre of the symbol.

Table : Aztec Code Sizes

Input Symbol Size Input Symbol Size Input Symbol Size

1 15 x15* 13 53 x 53 25 105 x 105
2 19 x 19* 14 57 x 57 26 109 x 109
3 23 x 23* 15 61 x 61 27 113 x 113
4 27 x 27* 16 67 x 67 28 117 x 117
5 19x19 17 71x71 29 121 x 121
6 23 x23 18 75x75 30 125x 125
7 27 x 27 19 79x79 31 131 x 131
8 31x31 20 83 x 83 32 135 x 135
9 37 x 37 21 87 x 87 33 139 x 139
10 41 x41 22 91 x91 34 143 x 143
11 45 x 45 23 95 x 95 35 147 x 147
12 49 x 49 24 101 x 101 36 151 x 151

Note that in symbols which have a specified size the amount of error correction is dependent on the length of
the data input and Zint will allow error correction capacities as low as 3 codewords.

Alternatively the amount of error correction data can be specified by setting the --secure option (API op-
tion_1) to a value from the following table:

Table : Aztec Code Error Correction Modes

Mode Error Correction Capacity

1 >10% + 3 codewords
2 >23% + 3 codewords
3 >36% + 3 codewords
4 >50% + 3 codewords

It is not possible to select both symbol size and error correction capacity for the same symbol. If both options
are selected then the error correction capacity selection will be ignored.

Aztec Code supports ECI encoding and can encode up to a maximum length of approximately 3823 numeric
or 3067 alphabetic characters or 1914 bytes of data. A separate symbology ID (BARCODE_HIBC_AZTEC) can be
used to encode Health Industry Barcode (HIBC) data.

Aztec Code supports Structured Append of up to 26 symbols and an optional alphanumeric ID of up to 32
characters, which can be set by using the - -structapp option (see 4.16 Structured Append) (API structapp).
The ID cannot contain spaces. If an ID is not given, no ID is encoded.

6.6.8 Aztec Runes (ISO 24778)

Figure 102: zint -b AZRUNE -d "125"

A truncated version of compact Aztec Code for encoding whole integers between 0 and 255, as defined in
ISO/IEC 24778 Annex A. Includes Reed-Solomon error correction. It does not support Structured Append.

68

6.6.9 Code One

3 ELE
EELR.

Figure 103: zint -b CODEONE -d "1234567890123456789012"

A matrix symbology developed by Ted Williams in 1992 which encodes data in a way similar to Data Matrix,
Code One is able to encode the Latin-1 character set or GS1 data, and also supports the ECI mechanism. There
are two types of Code One symbol - fixed-ratio symbols which are roughly square (versions A through to H)
and variable-width versions (version S and T). These can be selected by using - -vers (APloption_2) as shown
in the table below:

Table : Code One Sizes

Numeric Data Alphanumeric Data
Input Version Size (W x H) Capacity Capacity
1 A 16 x 18 22 13
2 B 22x22 44 27
3 C 28x 28 104 64
4 D 40 x 42 217 135
5 E 52 x 54 435 271
6 F 70x76 886 553
7 G 104 x 98 1755 1096
8 H 148 x 134 3550 2218
9 S width x 8 18 N/A
10 T width x 16 90 55

Version S symbols can only encode numeric data. The width of version S and version T symbols is determined
by the length of the input data.

Code One supports Structured Append of up to 128 symbols, which can be set by using the - -structapp option
(see 4.16 Structured Append) (API structapp). It does not support specifying an ID. Structured Append is
not supported with GS1 data nor for Version S symbols.

6.6.10 Grid Matrix

Figure 104: zint -b GRIDMATRIX --eci=29 -d "AAT2556 Eti7TEEEE + [E[E4%#kEE 200mA E 2A tel:86
019 82512738"

Grid Matrix groups modules in a chequerboard pattern, and by default supports the GB 2312 standard set,
which includes Hanzi, ASCII and a small number of ISO/IEC 8859-1 characters. Input should be entered as
UTF-8 with conversion to GB 2312 being carried out automatically by Zint. The symbology also supports the
ECI mechanism. Support for GS1 data has not yet been implemented.

The size of the symbol and the error correction capacity can be specified. If you specify both of these values
then Zint will make a ‘best-fit' attempt to satisfy both conditions. The symbol size can be specified using the
--vers option (APIoption_2), and the error correction capacity can be specified by using the - - secure option
(API option_1), according to the following tables:

69

Table : Grid Matrix Sizes

Input Symbol Size Input Symbol Size

1 18 x 18 8 102 x 102
2 30x 30 9 114 x 114
3 42 x 42 10 126 x 126
4 54 x 54 11 138 x 138
5 66 x 66 12 150 x 150
6 78 x78 13 162 x 162
7 90 x 90

Table : Grid Matrix Error Correction Modes

Mode Error Correction Capacity

Approximately 10%
Approximately 20%
Approximately 30%
Approximately 40%
Approximately 50%

Q= WO -

Non-ASCII data density may be maximized by using the --fullmultibyte switch (API option_3 =
ZINT_FULL_MULTIBYTE), but check that your barcode reader supports this before using.

Grid Matrix supports Structured Append of up to 16 symbols and a numeric ID (file signature), which can be
set by using the --structapp option (see 4.16 Structured Append) (API structapp). The ID ranges from 0
(default) to 255.

6.6.11 DotCode

Figure 105: zint -b DOTCODE -d "[01]00012345678905[17]201231[10]ABC123456" --gsi

DotCode uses a grid of dots in a rectangular formation to encode characters up to a maximum of approximately
450 characters (or 900 numeric digits). The symbology supports ECI encoding and GS1 data encoding. By
default Zint will produce a symbol which is approximately square, however the width of the symbol can be
adjusted by using the --cols option (API option_2) (maximum 200). Outputting DotCode to raster images
(BMP, GIF, PCX, PNG, TIF) will require setting the scale of the image to a larger value than the default (e.g.
approximately 10) for the dots to be plotted correctly. Approximately 33% of the resulting symbol is comprised
of error correction codewords.

DotCode has two sets of 4 masks, designated 0-3 and 0'-3", the second "prime" set being the same as the first
with corners lit. The best mask to use is selected automatically by Zint but may be manually specified by using
the - -mask switch with values 0-7, where 4-7 denote 0'-3’, or in the API by setting option_3 = (N + 1) <<
8 where N is 0-7.

DotCode supports Structured Append of up to 35 symbols, which can be set by using the - -structapp option
(see 4.16 Structured Append) (API structapp). It does not support specifying an ID.

70

6.6.12 Han Xin Code (ISO 20830)

Also known as Chinese Sensible Code, Han Xin is capable of encoding characters in either the Latin-1 character
set or the GB 18030 character set (which is a UTF, i.e. includes all Unicode characters, optimized for Chinese
characters) and is also able to support the ECI mechanism. Support for the encoding of GS1 data has not yet

been implemented.

The size of the symbol can be specified using the - -vers option (APl option_2) to a value between 1 and 84

according to the following table.

Figure 106: zint -b HANXIN

Table : Han Xin Sizes

ﬁf Tl
S

-d "Hanxin Code symbol"

Input Symbol Size Input Symbol Size Input Symbol Size
1 23x23 29 79x79 57 135 x 135
2 25x25 30 81 x 81 58 137 x 137
3 27 x 27 31 83 x 83 59 139 x 139
4 29x29 32 85 x 85 60 141 x 141
5 31x31 33 87 x 87 61 143 x 143
6 33x33 34 89 x 89 62 145 x 145
7 35x35 35 91x91 63 147 x 147
8 37 x37 36 93 x93 64 149 x 149
9 39x39 37 95 x 95 65 151 x 151
10 41 x 41 38 97 x 97 66 153 x 153
11 43 x 43 39 99 x 99 67 155 x 155
12 45 x 45 40 101 x 101 68 157 x 157
13 47 x 47 41 103 x 103 69 159 x 159
14 49 x 49 42 105 x 105 70 161 x 161
15 51x 51 43 107 x 107 71 163 x 163
16 53 x 53 44 109 x 109 72 165 x 165
17 55 x 55 45 111 x 111 73 167 x 167
18 57 x 57 46 113 x 113 74 169 x 169
19 59 x 59 47 115x 115 75 171 x 171
20 61 x 61 48 117 x 117 76 173 x 173
21 63 x 63 49 119 x 119 77 175 x 175
22 65 x 65 50 121 x 121 78 177 x 177
23 67 x 67 51 123 x 123 79 179 x 179
24 69 x 69 52 125 x 125 80 181 x 181
25 71x71 53 127 x 127 81 183 x 183
26 73x73 54 129 x 129 82 185 x 185
27 75x75 55 131 x 131 83 187 x 187
28 77 x 77 56 133 x 133 84 189 x 189

There are four levels of error correction capacity available for Han Xin Code which can be set by using the
- -secure option (APl option_1) to a value from the following table:

Table : Han Xin Error Correction Modes

Mode Recovery Capacity
1 Approx 8%

2 Approx 15%

3 Approx 23%

4 Approx 30%

71

Non-ASCII data density may be maximized by using the --fullmultibyte switch (API option_3 =
ZINT_FULL_MULTIBYTE), but check that your barcode reader supports this before using.

Han Xin has four different masks designed to minimize unwanted patterns. The best mask to use is selected
automatically by Zint but may be manually specified by using the - -mask switch with values 0-3, or in the API
by setting option_3 = (N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set

option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8

6.6.13 Ultracode

Figure 107: zint -b ULTRA -d "HEIMASIPA KENNARAHASKOLA ISLANDS"

This symbology uses a grid of coloured elements to encode data. ECI and GS1 modes are supported. The
amount of error correction can be set using the - -secure option (API option_1) to a value as shown in the
following table:

Table : Ultracode Error Correction Values

Value ECLevel Amount of symbol holding error correction data

1 ECO 0% - Error detection only
2 EC1 Approx 5%

3 EC2 Approx 9% - Default value
4 EC3 Approx 17%

5 EC4 Approx 25%

6 EC5 Approx 33%

Zint does not currently implement data compression by default, but this can be initiated through the API by
setting

symbol->option_3 = ULTRA_COMPRESSION;

WARNING: Ultracode data compression is experimental and should not be used in a production environment.

Revision 2 of Ultracode (2021) which swops and inverts the DCCU and DCCL tiles may be specified using
--vers=2 (APl option_2 = 2).

Ultracode supports Structured Append of up to 8 symbols and an optional numeric ID (File Number), which
can be set by using the - -structapp option (see 4.16 Structured Append) (API structapp). The ID ranges
from 1 to 80088. If an ID is not given, no ID is encoded.

72

6.7 Other Barcode-Like Markings
6.7.1 Facing Identification Mark (FIM)

Figure 108: zint -b FIM --compliantheight -d "C"

Used by the United States Postal Service (USPS), the FIM symbology is used to assist automated mail process-
ing. There are only 5 valid symbols which can be generated using the characters A-E as shown in the table
below.

Table : Valid FIM Characters

Code Letter Usage

A Used for courtesy reply mail and metered reply mail with a
pre-printed POSTNET symbol.
B Used for business reply mail without a pre-printed zip code.
C Used for business reply mail with a pre-printed zip code.
D Used for Information Based Indicia (IBI) postage.
E Used for customized mail with a USPS Intelligent Mail barcode.
6.7.2 Flattermarken

Figure 109: zint -b FLAT -d "1304056"

Used for the recognition of page sequences in print-shops, the Flattermarken is not a true barcode symbol and
requires precise knowledge of the position of the mark on the page. The Flattermarken system can encode
numeric data up to a maximum of 90 digits and does not include a check digit.

6.7.3 DAFT Code

IﬁgurellO:zint -b DAFT -d "AAFDTTDAFADTFTTFFFDATFTADTTFFTDAFAFDTF" --height=8.494 --vers=256

This is a method for creating 4-state codes where the data encoding is provided by an external program. Input
data should consist of the letters 'D', 'A", 'F' and 'T' where these refer to descender, ascender, full (ascender
and descender) and tracker (neither ascender nor descender) respectively. All other characters are invalid.
The ratio of the tracker size to full height can be given in thousandths (permille) using the - -vers option (API
option_2). The default value is 250 (25%).

For example the following

zint -b DAFT -d AAFDTTDAFADTFTTFFFDATFTADTTFFTDAFAFDTF --height=8.494 --vers=256

produces the same barcode (see 6.5.3 Royal Mail 4-State Customer Code (RM4SCC)) as
zint -b RM4SCC --compliantheight -d "W1JOTRO1"

73

7. Legal and Version Information

7.1 License

Zint, libzint and Zint Barcode Studio are Copyright © 2022 Robin Stuart. All historical versions are distributed
under the GNU General Public License version 3 or later. Version 2.5 (and later) is released under a dual license:
the encoding library is released under the BSD license whereas the GUI, Zint Barcode Studio, is released under
the GNU General Public License version 3 or later.

Telepen is a trademark of SB Electronic Systems Ltd.
QR Code is a registered trademark of Denso Wave Incorporated.

Microsoft, Windows and the Windows logo are either registered trademarks or trademarks of Microsoft Cor-
poration in the United States and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Mac and macOS are trademarks of Apple Inc., registered in the U.S. and other countries.

Zint.org.uk website design and hosting provided by Robert Elliott.

7.2 Patent Issues

All of the code in Zint is developed using information in the public domain, usually freely available on the
Internet. Some of the techniques used may be subject to patents and other intellectual property legislation. It is
my belief that any patents involved in the technology underlying symbologies utilised by Zint are ‘unadopted’
, that is the holder does not object to their methods being used.

Any methods patented or owned by third parties or trademarks or registered trademarks used within Zint or
in this document are and remain the property of their respective owners and do not indicate endorsement or
affiliation with those owners, companies or organisations.

7.3 Version Information
The current stable version of Zint is 2.10.0, released on 14th August 2021.

See "ChangeLog" in the project root directory for information on all releases.

7.4 Sources of Information

Below is a list of some of the sources used in rough chronological order:

Nick Johnson's Barcode Specifications

Bar Code 1 Specification Source Page

SB Electronic Systems Telepen website

Pharmacode specifications from Laetus

Morovia RM4SCC specification

Australia Post’s ‘ A Guide to Printing the 4-State Barcode’ and becsample source code
Plessey algorithm from GNU-Barcode v0.98 by Leonid A. Broukhis

GS1 General Specifications v 8.0 Issue 2

PNG: The Definitive Guide and wpng source code by Greg Reolofs

PDF417 specification and pdf417 source code by Grand Zebu

Barcode Reference, TBarCode/X User Documentation and TBarCode/X demonstration program from
Tec-It

IEC16022 source code by Stefan Schmidt et al

United States Postal Service Specification USPS-B-3200

Adobe Systems Incorporated Encapsulated PostScript File Format Specification

BSI Online Library

Libdmtx Data Matrix ECC200 decoding library

7.5 Standards Compliance
Zint was developed to provide compliance with the following British and international standards:

e BS EN 798:1996 Bar coding - Symbology specifications - ‘Codabar’

74

BS EN 12323:2005 AIDC technologies - Symbology specifications - Code 16K

e ISO/IEC 15420:2009 Information technology - Automatic identification and data capture techniques -

EAN/UPC bar code symbology specification

ISO/IEC 15417:2007 Information technology - Automatic identification and data capture techniques -
Code 128 bar code symbology specification

ISO/IEC 15438:2015 Information technology - Automatic identification and data capture techniques -
PDF417 bar code symbology specification

ISO/IEC 16022:2006 Information technology - Automatic identification and data capture techniques - Data
Matrix ECC200 bar code symbology specification

e ISO/IEC 16023:2000 Information technology - International symbology specification - MaxiCode
e ISO/IEC 16388:2007 Information technology - Automatic identification and data capture techniques -

Code 39 bar code symbology specification

ISO/IEC 18004:2015 Information technology - Automatic identification and data capture techniques - QR
Code bar code symbology specification

ISO/IEC 20830:2021 Information technology - Automatic identification and data capture techniques - Han
Xin Code bar code symbology specification

ISO/IEC 24723:2010 Information technology - Automatic identification and data capture techniques - GS1
Composite bar code symbology specification

ISO/IEC 24724:2011 Information technology - Automatic identification and data capture techniques - GS1
DataBar bar code symbology specification

ISO/IEC 24728:2006 Information technology - Automatic identification and data capture techniques - Mi-
croPDF417 bar code symbology specification

ISO/IEC 24778:2008 Information technology - Automatic identification and data capture techniques -
Aztec Code bar code symbology specification

ISO/IEC JTC1/SC31N000 (Draft 2019-6-24) Information technology - Automatic identification and data
capture techniques - Rectangular Micro QR Code (rMQR) bar code symbology specification

ISO/IEC 16390:2007 Information technology - Automatic identification and data capture techniques - In-
terleaved 2 of 5 bar code symbology specification

ISO/IEC 21471:2020 Information technology - Automatic identification and data capture techniques - Ex-
tended rectangular data matrix (DMRE) bar code symbology specification

Uniform Symbology Specification Code One (AIM Inc., 1994)

ANSI/AIM BC12-1998 - Uniform Symbology Specification Channel Code

ANSI/AIM BC6-2000 - Uniform Symbology Specification Code 49

ANSI/AIM BC5-1995 - Uniform Symbology Specification Code 93

ANSI/HIBC 2.6-2016 - The Health Industry Bar Code (HIBC) Supplier Labeling Standard

AIM ISS-X-24 - Uniform Symbology Specification Codablock-F

AIM TSC1705001 (v 4.0 Draft 0.15) - Information technology - Automatic identification and data capture
techniques - Bar code symbology specification - DotCode (Revised 28th May 2019)

AIMDO014 (v 1.63) - Information technology, Automatic identification and data capture techniques - Bar
code symbology specification - Grid Matrix (Released 9th Dec 2008)

AIMD/TSC15032-43 (v 0.99c) - International Technical Specification - Ultracode Symbology (Draft) (Re-
leased 4th Nov 2015)

o GS1 General Specifications Release 22.0 (Jan 2022)
o AIM ITS/04-001 International Technical Standard - Extended Channel Interpretations Part 1: Identifica-

tion Schemes and Protocol (Released 24th May 2004)
AIM ITS/04-023 International Technical Standard - Extended Channel Interpretations Part 3: Register
(Version 2, February 2022)

75

A. Character Encoding
This section is intended as a quick reference to the character sets used by Zint. All symbologies use standard

ASCII input as shown in section A.1, but some support extended characters as shown in the subsequent A.2
Latin Alphabet No. 1 (ISO/IEC 8859-1).

A.1 ASCII Standard

The ubiquitous ASCII standard is well known to most computer users. It’s reproduced here for reference.

Table : ASCII

Hex O 1 2 3 4 5 6 7
0 NUL DLE SPACE © @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S ¢ s
4 EOT DC4 $ 4 D T d ¢t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F VvV f v
7 BEL ETB ! 7 G W g w
8 BS CAN (8 H X h x
9 TAB EM) 9 I Y i vy
A LF SuB * : 0 J z2 j oz
B VI ESC + K [k {
C FF FS , < L \ 1 |
D CR GS - = M] m }
E SO RS . > N A n -~
F SI us / ? 0 o DEL

A.2 Latin Alphabet No. 1 (ISO/IEC 8859-1)

ISO/IEC 8859-1 defines additional characters common in western European languages like French, German,
Italian and Spanish. This extension is the default encoding of many barcodes (see Table : Default Character
Sets) when a codepoint above hex 9F is encoded. Note that codepoints hex 80 to 9F are not defined.

Table : ISO/IEC 8859-1

Hex 8 9 A B C D E F
0 NBSP ° A P a o
1 i + A N a @
2 ¢ 2 A 0 a o
3 £ s A0 a o
4 a A 0 a o
5 ¥ A0 a &
6 ! T £ O & 0O
7 8 c x ¢ =
8 ” E 0 e o
9 Tt E U é u
A a ° E U & u
B « » E 0 e 0
C - »w I 0 1 1
D SHY % I Y i vy
E ® » I p 1 p
F n ¢ I B iy

76

B. CLI Help

Zint version 2.10.0.9

Encode input data in a barcode and save as BMP/EMF/EPS/GIF/PCX/PNG/SVG/TIF/TXT

-b,

--barcode=TYPE

- -addongap=NUMBER
--batch
--bg=COLOUR
--binary

--bind

--bold

- -border=NUMBER
--box

--cmyk
--cols=NUMBER
--compliantheight

_d’

--data=DATA

--direct

--dmre
--dotsize=NUMBER
--dotty

- -dump

_e,

--ecinos

--eCci=NUMBER
--esc

--fast
--fg=COLOUR
--filetype=TYPE
--fullmultibyte
--gsi
--gslnocheck
--gslparens
--gssep

--guarddescent=NUMBER

_h,

--help

--height=NUMBER
--heightperrow

_i’

--input=FILE

--init

- -mask=NUMBER
--mirror
--mode=NUMBER
--nobackground
--noquietzones
--notext

_0,

--output=FILE

--primary=STRING
--quietzones

_r’

--reverse

--rotate=NUMBER

- -rows=NUMBER
--scale=NUMBER

- -scmvv=NUMBER
--secure=NUMBER
--segN=ECI, DATA
--separator=NUMBER
--small

--square

--structapp=I,C[, ID]

_t’

--types

Number or name of barcode type. Default is 20 (CODE128)
Set add-on gap in multiples of X-dimension for UPC/EAN
Treat each line of input file as a separate data set
Specify a background colour (in hex RGB/RGBA)

Treat input as raw binary data

Add boundary bars

Use bold text

Set width of border in multiples of X-dimension

Add a box around the symbol

Use CMYK colour space in EPS/TIF symbols

Set the number of data columns in symbol

wWarn if height not compliant, and use standard default
Set the symbol data content (segment 0)

Send output to stdout

Allow Data Matrix Rectangular Extended

Set radius of dots in dotty mode

Use dots instead of squares for matrix symbols

Dump hexadecimal representation to stdout

Display ECI (Extended Channel Interpretation) table

Set the ECI code for the data (segment 0)

Process escape characters in input data

Use faster encodation (Data Matrix)

Specify a foreground colour (in hex RGB/RGBA)

Set output file type BMP/EMF/EPS/GIF/PCX/PNG/SVG/TIF/TXT
Use multibyte for binary/Latin (QR/Han Xin/Grid Matrix)
Treat input as GS1 compatible data

Do not check validity of GS1 data

Process parentheses "()" as GS1 AI delimiters, not "[]"
Use separator GS for GS1 (Data Matrix)

Set height of guard bar descent in X-dims (UPC/EAN)
Display help message

Set height of symbol in multiples of X-dimension

Treat height as per-row

Read input data from FILE

Create reader initialisation/programming symbol

Set masking pattern to use (QR/Han Xin/DotCode)

Use batch data to determine filename

Set encoding mode (MaxiCode/Composite)

Remove background (EMF/EPS/GIF/PNG/SVG/TIF only)
Disable default quiet zones

Remove human readable text

Send output to FILE. Default is out.png

Set primary message (MaxiCode/Composite)

Add compliant quiet zones

Reverse colours (white on black)

Rotate symbol by NUMBER degrees

Set number of rows (Codablock-F/PDF417)

Adjust size of X-dimension

Prefix SCM with "[)>\R01\Gvv" (vv is NUMBER) (MaxiCode)
Set error correction level (ECC)

Set the ECI & data content for segment N, where N 1 to 9
Set height of row separator bars (stacked symbologies)
Use small text

Force Data Matrix symbols to be square

Set Structured Append info (I index, C count)

Display table of barcode types

77

--vers=NUMBER Set symbol version (size, check digits, other options)

-v, --version Display Zint version

--vwhitesp=NUMBER Set height of vertical whitespace in multiples of X-dim
-w, --whitesp=NUMBER Set width of horizontal whitespace in multiples of X-dim
--werror Convert all warnings into errors

78

	1. Introduction
	1.1 Glossary

	2. Installing Zint
	2.1 Linux
	2.2 Microsoft Windows
	2.3 Apple macOS
	2.4 Zint Tcl Backend

	3. Using Zint Barcode Studio
	3.1 Main Window and Data Tab
	3.2 Composite Groupbox
	3.3 Additional ECI/Data Segments Groupbox
	3.4 Symbology-specific Tab
	3.5 Appearance Tab
	3.6 Colour Dialog
	3.7 Data Dialog
	3.8 Sequence Dialog
	3.9 Export Dialog
	3.10 CLI Equivalent Dialog

	4. Using the Command Line
	4.1 Inputting Data
	4.2 Directing Output
	4.3 Selecting Barcode Type
	4.4 Adjusting Height
	4.5 Adjusting Whitespace
	4.6 Adding Boundary Bars and Boxes
	4.7 Using Colour
	4.8 Rotating the Symbol
	4.9 Adjusting Image Size
	4.9.1 Scaling Example
	4.9.2 MaxiCode Raster Scaling

	4.10 Input Modes
	4.10.1 Unicode, Data, and GS1 Modes
	4.10.2 Input Modes and ECI
	4.10.2.1 Input Modes and ECI Example 1
	4.10.2.2 Input Modes and ECI Example 2
	4.10.2.3 Input Modes and ECI Example 3

	4.11 Batch Processing
	4.12 Direct Output
	4.13 Automatic Filenames
	4.14 Working with Dots
	4.15 Multiple Segments
	4.16 Structured Append
	4.17 Help Options
	4.18 Other Output Options

	5. Using the API
	5.1 Creating and Deleting Symbols
	5.2 Encoding and Saving to File
	5.3 Encoding and Printing Functions in Depth
	5.4 Buffering Symbols in Memory (raster)
	5.5 Buffering Symbols in Memory (vector)
	5.6 Setting Options
	5.7 Handling Errors
	5.8 Specifying a Symbology
	5.9 Adjusting Other Output Options
	5.10 Setting the Input Mode
	5.11 Multiple Segments
	5.12 Verifying Symbology Availability
	5.13 Checking Symbology Capabilities
	5.14 Zint Version

	6. Types of Symbology
	6.1 One-Dimensional Symbols
	6.1.1 Code 11
	6.1.2 Code 2 of 5
	6.1.2.1 Standard Code 2 of 5
	6.1.2.2 IATA Code 2 of 5
	6.1.2.3 Industrial Code 2 of 5
	6.1.2.4 Interleaved Code 2 of 5 (ISO 16390)
	6.1.2.5 Code 2 of 5 Data Logic
	6.1.2.6 ITF-14
	6.1.2.7 Deutsche Post Leitcode
	6.1.2.8 Deutsche Post Identcode

	6.1.3 Universal Product Code (ISO 15420)
	6.1.3.1 UPC Version A
	6.1.3.2 UPC Version E

	6.1.4 European Article Number (ISO 15420)
	6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13
	6.1.4.2 SBN, ISBN and ISBN-13

	6.1.5 Plessey
	6.1.5.1 UK Plessey
	6.1.5.2 MSI Plessey

	6.1.6 Telepen
	6.1.6.1 Telepen Alpha
	6.1.6.2 Telepen Numeric

	6.1.7 Code 39
	6.1.7.1 Standard Code 39 (ISO 16388)
	6.1.7.2 Extended Code 39
	6.1.7.3 Code 93
	6.1.7.4 PZN (Pharmazentralnummer)
	6.1.7.5 LOGMARS
	6.1.7.6 Code 32
	6.1.7.7 HIBC Code 39
	6.1.7.8 Vehicle Identification Number (VIN)

	6.1.8 Codabar (EN 798)
	6.1.9 Pharmacode
	6.1.10 Code 128
	6.1.10.1 Standard Code 128 (ISO 15417)
	6.1.10.2 Code 128 Subset B
	6.1.10.3 GS1-128
	6.1.10.4 EAN-14
	6.1.10.5 NVE-18 (SSCC-18)
	6.1.10.6 HIBC Code 128
	6.1.10.7 DPD Code

	6.1.11 GS1 DataBar (ISO 24724)
	6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated
	6.1.11.2 GS1 DataBar Limited
	6.1.11.3 GS1 DataBar Expanded

	6.1.12 Korea Post Barcode
	6.1.13 Channel Code

	6.2 Stacked Symbologies
	6.2.1 Basic Symbol Stacking
	6.2.2 Codablock-F
	6.2.3 Code 16K (EN 12323)
	6.2.4 PDF417 (ISO 15438)
	6.2.5 Compact PDF417 (ISO 15438)
	6.2.6 MicroPDF417 (ISO 24728)
	6.2.7 GS1 DataBar Stacked (ISO 24724)
	6.2.7.1 GS1 DataBar Stacked
	6.2.7.2 GS1 DataBar Stacked Omnidirectional
	6.2.7.3 GS1 DataBar Expanded Stacked

	6.2.8 Code 49

	6.3 Composite Symbols (ISO 24723)
	6.3.1 CC-A
	6.3.2 CC-B
	6.3.3 CC-C

	6.4 Two-Track Symbols
	6.4.1 Two-Track Pharmacode
	6.4.2 POSTNET
	6.4.3 PLANET

	6.5 4-State Postal Codes
	6.5.1 Australia Post 4-State Symbols
	6.5.1.1 Customer Barcodes
	6.5.1.2 Reply Paid Barcode
	6.5.1.3 Routing Barcode
	6.5.1.4 Redirect Barcode

	6.5.2 Dutch Post KIX Code
	6.5.3 Royal Mail 4-State Customer Code (RM4SCC)
	6.5.4 Royal Mail 4-State Mailmark
	6.5.5 USPS Intelligent Mail
	6.5.6 Japanese Postal Code

	6.6 Two-Dimensional Matrix Symbols
	6.6.1 Data Matrix (ISO 16022)
	6.6.2 QR Code (ISO 18004)
	6.6.3 Micro QR Code (ISO 18004)
	6.6.4 Rectangular Micro QR Code (rMQR)
	6.6.5 UPNQR (Univerzalnega Plačilnega Naloga QR)
	6.6.6 MaxiCode (ISO 16023)
	6.6.7 Aztec Code (ISO 24778)
	6.6.8 Aztec Runes (ISO 24778)
	6.6.9 Code One
	6.6.10 Grid Matrix
	6.6.11 DotCode
	6.6.12 Han Xin Code (ISO 20830)
	6.6.13 Ultracode

	6.7 Other Barcode-Like Markings
	6.7.1 Facing Identification Mark (FIM)
	6.7.2 Flattermarken
	6.7.3 DAFT Code

	7. Legal and Version Information
	7.1 License
	7.2 Patent Issues
	7.3 Version Information
	7.4 Sources of Information
	7.5 Standards Compliance

	A. Character Encoding
	A.1 ASCII Standard
	A.2 Latin Alphabet No. 1 (ISO/IEC 8859-1)

	B. CLI Help

