/* dmatrix.c Handles Data Matrix ECC 200 symbols */ /* libzint - the open source barcode library Copyright (C) 2009 - 2021 Robin Stuart developed from and including some functions from: IEC16022 bar code generation Adrian Kennard, Andrews & Arnold Ltd with help from Cliff Hones on the RS coding (c) 2004 Adrian Kennard, Andrews & Arnold Ltd (c) 2006 Stefan Schmidt Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* vim: set ts=4 sw=4 et : */ #include #include #include #ifdef _MSC_VER #include #endif #include "common.h" #include "reedsol.h" #include "dmatrix.h" /* Annex F placement algorithm low level */ static void dm_placementbit(int *array, const int NR, const int NC, int r, int c, const int p, const char b) { if (r < 0) { r += NR; c += 4 - ((NR + 4) % 8); } if (c < 0) { c += NC; r += 4 - ((NC + 4) % 8); } // Necessary for DMRE (ISO/IEC 21471:2020 Annex E) if (r >= NR) { r -= NR; } // Check index limits assert(r < NR); assert(c < NC); // Check double-assignment assert(0 == array[r * NC + c]); array[r * NC + c] = (p << 3) + b; } static void dm_placementblock(int *array, const int NR, const int NC, const int r, const int c, const int p) { dm_placementbit(array, NR, NC, r - 2, c - 2, p, 7); dm_placementbit(array, NR, NC, r - 2, c - 1, p, 6); dm_placementbit(array, NR, NC, r - 1, c - 2, p, 5); dm_placementbit(array, NR, NC, r - 1, c - 1, p, 4); dm_placementbit(array, NR, NC, r - 1, c - 0, p, 3); dm_placementbit(array, NR, NC, r - 0, c - 2, p, 2); dm_placementbit(array, NR, NC, r - 0, c - 1, p, 1); dm_placementbit(array, NR, NC, r - 0, c - 0, p, 0); } static void dm_placementcornerA(int *array, const int NR, const int NC, const int p) { dm_placementbit(array, NR, NC, NR - 1, 0, p, 7); dm_placementbit(array, NR, NC, NR - 1, 1, p, 6); dm_placementbit(array, NR, NC, NR - 1, 2, p, 5); dm_placementbit(array, NR, NC, 0, NC - 2, p, 4); dm_placementbit(array, NR, NC, 0, NC - 1, p, 3); dm_placementbit(array, NR, NC, 1, NC - 1, p, 2); dm_placementbit(array, NR, NC, 2, NC - 1, p, 1); dm_placementbit(array, NR, NC, 3, NC - 1, p, 0); } static void dm_placementcornerB(int *array, const int NR, const int NC, const int p) { dm_placementbit(array, NR, NC, NR - 3, 0, p, 7); dm_placementbit(array, NR, NC, NR - 2, 0, p, 6); dm_placementbit(array, NR, NC, NR - 1, 0, p, 5); dm_placementbit(array, NR, NC, 0, NC - 4, p, 4); dm_placementbit(array, NR, NC, 0, NC - 3, p, 3); dm_placementbit(array, NR, NC, 0, NC - 2, p, 2); dm_placementbit(array, NR, NC, 0, NC - 1, p, 1); dm_placementbit(array, NR, NC, 1, NC - 1, p, 0); } static void dm_placementcornerC(int *array, const int NR, const int NC, const int p) { dm_placementbit(array, NR, NC, NR - 3, 0, p, 7); dm_placementbit(array, NR, NC, NR - 2, 0, p, 6); dm_placementbit(array, NR, NC, NR - 1, 0, p, 5); dm_placementbit(array, NR, NC, 0, NC - 2, p, 4); dm_placementbit(array, NR, NC, 0, NC - 1, p, 3); dm_placementbit(array, NR, NC, 1, NC - 1, p, 2); dm_placementbit(array, NR, NC, 2, NC - 1, p, 1); dm_placementbit(array, NR, NC, 3, NC - 1, p, 0); } static void dm_placementcornerD(int *array, const int NR, const int NC, const int p) { dm_placementbit(array, NR, NC, NR - 1, 0, p, 7); dm_placementbit(array, NR, NC, NR - 1, NC - 1, p, 6); dm_placementbit(array, NR, NC, 0, NC - 3, p, 5); dm_placementbit(array, NR, NC, 0, NC - 2, p, 4); dm_placementbit(array, NR, NC, 0, NC - 1, p, 3); dm_placementbit(array, NR, NC, 1, NC - 3, p, 2); dm_placementbit(array, NR, NC, 1, NC - 2, p, 1); dm_placementbit(array, NR, NC, 1, NC - 1, p, 0); } /* Annex F placement algorithm main function */ static void dm_placement(int *array, const int NR, const int NC) { int r, c, p; // start p = 1; r = 4; c = 0; do { // check corner if (r == NR && !c) dm_placementcornerA(array, NR, NC, p++); if (r == NR - 2 && !c && NC % 4) dm_placementcornerB(array, NR, NC, p++); if (r == NR - 2 && !c && (NC % 8) == 4) dm_placementcornerC(array, NR, NC, p++); if (r == NR + 4 && c == 2 && !(NC % 8)) dm_placementcornerD(array, NR, NC, p++); // up/right do { if (r < NR && c >= 0 && !array[r * NC + c]) dm_placementblock(array, NR, NC, r, c, p++); r -= 2; c += 2; } while (r >= 0 && c < NC); r++; c += 3; // down/left do { if (r >= 0 && c < NC && !array[r * NC + c]) dm_placementblock(array, NR, NC, r, c, p++); r += 2; c -= 2; } while (r < NR && c >= 0); r += 3; c++; } while (r < NR || c < NC); // unfilled corner if (!array[NR * NC - 1]) array[NR * NC - 1] = array[NR * NC - NC - 2] = 1; } /* calculate and append ecc code, and if necessary interleave */ static void dm_ecc(unsigned char *binary, const int bytes, const int datablock, const int rsblock, const int skew) { int blocks = (bytes + 2) / datablock, b; int rsblocks = rsblock * blocks; int n; rs_t rs; rs_init_gf(&rs, 0x12d); rs_init_code(&rs, rsblock, 1); for (b = 0; b < blocks; b++) { unsigned char buf[256], ecc[256]; int p = 0; for (n = b; n < bytes; n += blocks) buf[p++] = binary[n]; rs_encode(&rs, p, buf, ecc); p = rsblock - 1; // comes back reversed for (n = b; n < rsblocks; n += blocks) { if (skew) { /* Rotate ecc data to make 144x144 size symbols acceptable */ /* See http://groups.google.com/group/postscriptbarcode/msg/5ae8fda7757477da or https://github.com/nu-book/zxing-cpp/issues/259 */ if (b < 8) { binary[bytes + n + 2] = ecc[p--]; } else { binary[bytes + n - 8] = ecc[p--]; } } else { binary[bytes + n] = ecc[p--]; } } } } /* Is basic (non-shifted) C40? */ static int dm_isc40(const unsigned char input) { if (input <= '9') { return input >= '0' || input == ' '; } return input >= 'A' && input <= 'Z'; } /* Is basic (non-shifted) TEXT? */ static int dm_istext(const unsigned char input) { if (input <= '9') { return input >= '0' || input == ' '; } return input >= 'a' && input <= 'z'; } /* Is basic (non-shifted) C40/TEXT? */ static int dm_isc40text(const int current_mode, const unsigned char input) { return current_mode == DM_C40 ? dm_isc40(input) : dm_istext(input); } /* Return true (1) if a character is valid in X12 set */ static int dm_isX12(const unsigned char input) { return dm_isc40(input) || input == 13 || input == '*' || input == '>'; } /* Return true (1) if a character is valid in EDIFACT set */ static int dm_isedifact(const unsigned char input, const int gs1) { return (input >= ' ' && input <= '^') && (!gs1 || input != '['); /* Can't encode GS1 FNC1/GS in EDIFACT */ } static int dm_p_r_6_2_1(const unsigned char source[], const int length, const int sp) { /* Annex P section (r)(6)(ii)(I) "If one of the three X12 terminator/separator characters first occurs in the yet to be processed data before a non-X12 character..." */ int i; for (i = sp; i < length && dm_isX12(source[i]); i++) { if (source[i] == 13 || source[i] == '*' || source[i] == '>') { return 1; } } return 0; } /* Count number of TEXT characters around `sp` between `position` and `length` - helper to avoid exiting from Base 256 too early if have series of TEXT characters */ static int dm_text_sp_cnt(const unsigned char source[], const int position, const int length, const int sp) { int i; int cnt = 0; /* Count from `sp` forward */ for (i = sp; i < length && dm_istext(source[i]); i++, cnt++); /* Count backwards from `sp` */ for (i = sp - 1; i >= position && dm_istext(source[i]); i--, cnt++); return cnt; } /* Character counts are multiplied by this, so as to be whole integer divisible by 2, 3 and 4 */ #define DM_MULT 12 #define DM_MULT_1_DIV_2 6 #define DM_MULT_2_DIV_3 8 #define DM_MULT_3_DIV_4 9 #define DM_MULT_1 12 #define DM_MULT_4_DIV_3 16 #define DM_MULT_2 24 #define DM_MULT_8_DIV_3 32 #define DM_MULT_3 26 #define DM_MULT_13_DIV_4 39 #define DM_MULT_10_DIV_3 40 #define DM_MULT_4 48 #define DM_MULT_17_DIV_4 51 #define DM_MULT_13_DIV_3 52 #define DM_MULT_MINUS_1 11 #define DM_MULT_CEIL(n) ((((n) + DM_MULT_MINUS_1) / DM_MULT) * DM_MULT) /* 'look ahead test' from Annex P */ static int dm_look_ahead_test(const unsigned char source[], const int length, const int position, const int current_mode, const int mode_arg, const int gs1, const int debug_print) { int ascii_count, c40_count, text_count, x12_count, edf_count, b256_count; int ascii_rnded, c40_rnded, text_rnded, x12_rnded, edf_rnded, b256_rnded; int cnt_1; int sp; /* step (j) */ if (current_mode == DM_ASCII || current_mode == DM_BASE256) { /* Adjusted to use for DM_BASE256 also */ ascii_count = 0; c40_count = DM_MULT_1; text_count = DM_MULT_1; x12_count = DM_MULT_1; edf_count = DM_MULT_1; b256_count = DM_MULT_2; /* Adjusted from DM_MULT_5_DIV_4 (1.25) */ } else { ascii_count = DM_MULT_1; c40_count = DM_MULT_2; text_count = DM_MULT_2; x12_count = DM_MULT_2; edf_count = DM_MULT_2; b256_count = DM_MULT_3; /* Adjusted from DM_MULT_9_DIV_4 (2.25) */ } switch (current_mode) { case DM_C40: c40_count = 0; break; case DM_TEXT: text_count = 0; break; case DM_X12: x12_count = 0; break; case DM_EDIFACT: edf_count = 0; break; case DM_BASE256: b256_count = mode_arg == 249 ? DM_MULT_1 : 0; /* Adjusted to use no. of bytes written */ break; } for (sp = position; sp < length; sp++) { unsigned char c = source[sp]; int is_extended = c & 0x80; /* ascii ... step (l) */ if ((c <= '9') && (c >= '0')) { ascii_count += DM_MULT_1_DIV_2; // (l)(1) } else { if (is_extended) { ascii_count = DM_MULT_CEIL(ascii_count) + DM_MULT_2; // (l)(2) } else { ascii_count = DM_MULT_CEIL(ascii_count) + DM_MULT_1; // (l)(3) } } /* c40 ... step (m) */ if (dm_isc40(c)) { c40_count += DM_MULT_2_DIV_3; // (m)(1) } else { if (is_extended) { c40_count += DM_MULT_8_DIV_3; // (m)(2) } else { c40_count += DM_MULT_4_DIV_3; // (m)(3) } } /* text ... step (n) */ if (dm_istext(c)) { text_count += DM_MULT_2_DIV_3; // (n)(1) } else { if (is_extended) { text_count += DM_MULT_8_DIV_3; // (n)(2) } else { text_count += DM_MULT_4_DIV_3; // (n)(3) } } /* x12 ... step (o) */ if (dm_isX12(c)) { x12_count += DM_MULT_2_DIV_3; // (o)(1) } else { if (is_extended) { x12_count += DM_MULT_13_DIV_3; // (o)(2) } else { x12_count += DM_MULT_10_DIV_3; // (o)(3) } } /* edifact ... step (p) */ if (dm_isedifact(c, gs1)) { edf_count += DM_MULT_3_DIV_4; // (p)(1) } else { if (is_extended) { edf_count += DM_MULT_17_DIV_4; // (p)(2) } else { edf_count += DM_MULT_13_DIV_4; // (p)(3) } } /* base 256 ... step (q) */ if ((gs1 == 1) && (c == '[')) { /* FNC1 separator */ b256_count += DM_MULT_4; // (q)(1) } else { b256_count += DM_MULT_1; // (q)(2) } if (sp >= position + 3) { /* At least 4 data characters processed ... step (r) */ /* NOTE: previous behaviour was at least 5 (same as BWIPP) */ if (debug_print) { printf("\n(m:%d, p:%d, sp:%d, a:%d): ascii_count %d, b256_count %d, edf_count %d, text_count %d" ", x12_count %d, c40_count %d ", current_mode, position, sp, mode_arg, ascii_count, b256_count, edf_count, text_count, x12_count, c40_count); } cnt_1 = ascii_count + DM_MULT_1; /* Adjusted from <= b256_count */ if (cnt_1 < b256_count && cnt_1 <= edf_count && cnt_1 <= text_count && cnt_1 <= x12_count && cnt_1 <= c40_count) { if (debug_print) printf("ASC->"); return DM_ASCII; /* step (r)(1) */ } cnt_1 = b256_count + DM_MULT_1; if (cnt_1 <= ascii_count || (cnt_1 < edf_count && cnt_1 < text_count && cnt_1 < x12_count && cnt_1 < c40_count)) { if (debug_print) printf("BAS->"); return DM_BASE256; /* step (r)(2) */ } cnt_1 = edf_count + DM_MULT_1; if (cnt_1 < ascii_count && cnt_1 < b256_count && cnt_1 < text_count && cnt_1 < x12_count && cnt_1 < c40_count) { if (debug_print) printf("EDI->"); return DM_EDIFACT; /* step (r)(3) */ } cnt_1 = text_count + DM_MULT_1; if (cnt_1 < ascii_count && cnt_1 < b256_count && cnt_1 < edf_count && cnt_1 < x12_count && cnt_1 < c40_count) { /* Adjusted to avoid early exit from Base 256 if have less than break-even sequence of TEXT chars */ if (current_mode == DM_BASE256 && position + 6 < length && dm_text_sp_cnt(source, position, length, sp) >= 12) { if (debug_print) printf("TEX->"); return DM_TEXT; /* step (r)(4) */ } else { if (debug_print) printf("TEX->"); return DM_TEXT; /* step (r)(4) */ } } cnt_1 = x12_count + DM_MULT_1; if (cnt_1 < ascii_count && cnt_1 < b256_count && cnt_1 < edf_count && cnt_1 < text_count && cnt_1 < c40_count) { if (debug_print) printf("X12->"); return DM_X12; /* step (r)(5) */ } cnt_1 = c40_count + DM_MULT_1; if (cnt_1 < ascii_count && cnt_1 < b256_count && cnt_1 < edf_count && cnt_1 < text_count) { if (c40_count < x12_count) { if (debug_print) printf("C40->"); return DM_C40; /* step (r)(6)(i) */ } if (c40_count == x12_count) { if (dm_p_r_6_2_1(source, length, sp) == 1) { if (debug_print) printf("X12->"); return DM_X12; /* step (r)(6)(ii)(I) */ } if (debug_print) printf("C40->"); return DM_C40; /* step (r)(6)(ii)(II) */ } } } } /* At the end of data ... step (k) */ /* step (k)(1) */ ascii_rnded = DM_MULT_CEIL(ascii_count); b256_rnded = DM_MULT_CEIL(b256_count); edf_rnded = DM_MULT_CEIL(edf_count); text_rnded = DM_MULT_CEIL(text_count); x12_rnded = DM_MULT_CEIL(x12_count); c40_rnded = DM_MULT_CEIL(c40_count); if (debug_print) { printf("\nEOD(m:%d, p:%d, a:%d): ascii_rnded %d, b256_rnded %d, edf_rnded %d, text_rnded %d" ", x12_rnded %d (%d), c40_rnded %d (%d) ", current_mode, position, mode_arg, ascii_rnded, b256_rnded, edf_rnded, text_rnded, x12_rnded, x12_count, c40_rnded, c40_count); } if (ascii_rnded <= b256_rnded && ascii_rnded <= edf_rnded && ascii_rnded <= text_rnded && ascii_rnded <= x12_rnded && ascii_rnded <= c40_rnded) { if (debug_print) printf("ASC->"); return DM_ASCII; /* step (k)(2) */ } if (b256_rnded < ascii_rnded && b256_rnded < edf_rnded && b256_rnded < text_rnded && b256_rnded < x12_rnded && b256_rnded < c40_rnded) { if (debug_print) printf("BAS->"); return DM_BASE256; /* step (k)(3) */ } /* Adjusted from < x12_rnded */ if (edf_rnded < ascii_rnded && edf_rnded < b256_rnded && edf_rnded < text_rnded && edf_rnded <= x12_rnded && edf_rnded < c40_rnded) { if (debug_print) printf("EDI->"); return DM_EDIFACT; /* step (k)(4) */ } if (text_rnded < ascii_rnded && text_rnded < b256_rnded && text_rnded < edf_rnded && text_rnded < x12_rnded && text_rnded < c40_rnded) { if (debug_print) printf("TEX->"); return DM_TEXT; /* step (k)(5) */ } /* Adjusted from < edf_rnded */ if (x12_rnded < ascii_rnded && x12_rnded < b256_rnded && x12_rnded <= edf_rnded && x12_rnded < text_rnded && x12_rnded < c40_rnded) { if (debug_print) printf("X12->"); return DM_X12; /* step (k)(6) */ } if (debug_print) printf("C40->"); return DM_C40; /* step (k)(7) */ } /* Copy C40/TEXT/X12 triplets from buffer to target. Returns elements left in buffer (< 3) */ static int dm_ctx_buffer_xfer(int process_buffer[8], int process_p, unsigned char target[], int *p_tp, const int debug_print) { int i, process_e; int tp = *p_tp; process_e = (process_p / 3) * 3; for (i = 0; i < process_e; i += 3) { int iv = (1600 * process_buffer[i]) + (40 * process_buffer[i + 1]) + (process_buffer[i + 2]) + 1; target[tp++] = (unsigned char) (iv >> 8); target[tp++] = (unsigned char) (iv & 0xFF); if (debug_print) { printf("[%d %d %d (%d %d)] ", process_buffer[i], process_buffer[i + 1], process_buffer[i + 2], target[tp - 2], target[tp - 1]); } } process_p -= process_e; if (process_p) { memmove(process_buffer, process_buffer + process_e, sizeof(int) * process_p); } *p_tp = tp; return process_p; } /* Copy EDIFACT quadruplets from buffer to target. Returns elements left in buffer (< 4) */ static int dm_edi_buffer_xfer(int process_buffer[8], int process_p, unsigned char target[], int *p_tp, const int empty, const int debug_print) { int i, process_e; int tp = *p_tp; process_e = (process_p / 4) * 4; for (i = 0; i < process_e; i += 4) { target[tp++] = (unsigned char) (process_buffer[i] << 2 | (process_buffer[i + 1] & 0x30) >> 4); target[tp++] = (unsigned char) ((process_buffer[i + 1] & 0x0f) << 4 | (process_buffer[i + 2] & 0x3c) >> 2); target[tp++] = (unsigned char) ((process_buffer[i + 2] & 0x03) << 6 | process_buffer[i + 3]); if (debug_print) { printf("[%d %d %d %d (%d %d %d)] ", process_buffer[i], process_buffer[i + 1], process_buffer[i + 2], process_buffer[i + 3], target[tp - 3], target[tp - 2], target[tp - 1]); } } process_p -= process_e; if (process_p) { memmove(process_buffer, process_buffer + process_e, sizeof(int) * process_p); if (empty) { if (process_p == 3) { target[tp++] = (unsigned char) (process_buffer[i] << 2 | (process_buffer[i + 1] & 0x30) >> 4); target[tp++] = (unsigned char) ((process_buffer[i + 1] & 0x0f) << 4 | (process_buffer[i + 2] & 0x3c) >> 2); target[tp++] = (unsigned char) ((process_buffer[i + 2] & 0x03) << 6); if (debug_print) { printf("[%d %d %d (%d %d %d)] ", process_buffer[i], process_buffer[i + 1], process_buffer[i + 2], target[tp - 3], target[tp - 2], target[tp - 1]); } } else if (process_p == 2) { target[tp++] = (unsigned char) (process_buffer[i] << 2 | (process_buffer[i + 1] & 0x30) >> 4); target[tp++] = (unsigned char) ((process_buffer[i + 1] & 0x0f) << 4); if (debug_print) { printf("[%d %d (%d %d)] ", process_buffer[i], process_buffer[i + 1], target[tp - 2], target[tp - 1]); } } else { target[tp++] = (unsigned char) (process_buffer[i] << 2); if (debug_print) printf("[%d (%d)] ", process_buffer[i], target[tp - 1]); } process_p = 0; } } *p_tp = tp; return process_p; } /* Get symbol size, as specified or else smallest containing `minimum` codewords */ STATIC_UNLESS_ZINT_TEST int dm_get_symbolsize(struct zint_symbol *symbol, const int minimum) { int i; if ((symbol->option_2 >= 1) && (symbol->option_2 <= DMSIZESCOUNT)) { return dm_intsymbol[symbol->option_2 - 1]; } for (i = DMSIZESCOUNT - 2; i >= 0; i--) { if (minimum > dm_matrixbytes[i]) { if (symbol->option_3 == DM_DMRE) { return i + 1; } if (symbol->option_3 == DM_SQUARE) { /* Skip rectangular symbols in square only mode */ while (i + 1 < DMSIZESCOUNT && dm_matrixH[i + 1] != dm_matrixW[i + 1]) { i++; } return i + 1 < DMSIZESCOUNT ? i + 1 : 0; } /* Skip DMRE symbols in no dmre mode */ while (i + 1 < DMSIZESCOUNT && dm_isDMRE[i + 1]) { i++; } return i + 1 < DMSIZESCOUNT ? i + 1 : 0; } } return 0; } /* Number of codewords remaining in a particular version (may be negative) */ STATIC_UNLESS_ZINT_TEST int dm_codewords_remaining(struct zint_symbol *symbol, const int tp, const int process_p) { int symbolsize = dm_get_symbolsize(symbol, tp + process_p); /* Allow for the remaining data characters */ return dm_matrixbytes[symbolsize] - tp; } /* Number of C40/TEXT elements needed to encode `input` */ STATIC_UNLESS_ZINT_TEST int dm_c40text_cnt(const int current_mode, const int gs1, unsigned char input) { int cnt; if (gs1 && input == '[') { return 2; } cnt = 1; if (input & 0x80) { cnt += 2; input = input - 128; } if ((current_mode == DM_C40 && dm_c40_shift[input]) || (current_mode == DM_TEXT && dm_text_shift[input])) { cnt += 1; } return cnt; } /* Update Base 256 field length */ STATIC_UNLESS_ZINT_TEST int dm_update_b256_field_length(unsigned char target[], int tp, int b256_start) { int b256_count = tp - (b256_start + 1); if (b256_count <= 249) { target[b256_start] = b256_count; } else { /* Insert extra codeword */ memmove(target + b256_start + 2, target + b256_start + 1, b256_count); target[b256_start] = (unsigned char) (249 + (b256_count / 250)); target[b256_start + 1] = (unsigned char) (b256_count % 250); tp++; } return tp; } /* Switch from ASCII or Base 256 to another mode */ STATIC_UNLESS_ZINT_TEST int dm_switch_mode(const int next_mode, unsigned char target[], int tp, int *b256_start, const int debug_print) { switch (next_mode) { case DM_ASCII: if (debug_print) printf("ASC "); break; case DM_C40: target[tp++] = 230; if (debug_print) printf("C40 "); break; case DM_TEXT: target[tp++] = 239; if (debug_print) printf("TEX "); break; case DM_X12: target[tp++] = 238; if (debug_print) printf("X12 "); break; case DM_EDIFACT: target[tp++] = 240; if (debug_print) printf("EDI "); break; case DM_BASE256: target[tp++] = 231; *b256_start = tp; target[tp++] = 0; /* Byte count holder (may be expanded to 2 codewords) */ if (debug_print) printf("BAS "); break; } return tp; } /* Encodes data using ASCII, C40, Text, X12, EDIFACT or Base 256 modes as appropriate Supports encoding FNC1 in supporting systems */ static int dm200encode(struct zint_symbol *symbol, const unsigned char source[], unsigned char target[], int *p_length, int *p_binlen) { int sp; int tp, i, gs1; int current_mode, next_mode; int not_first = 0; int inputlen = *p_length; int process_buffer[8]; /* holds remaining data to finalised */ int process_p = 0; /* number of characters left to finalise */ int b256_start = 0; int symbols_left; const int debug_print = symbol->debug & ZINT_DEBUG_PRINT; sp = 0; tp = 0; if (symbol->structapp.count) { int id1, id2; if (symbol->structapp.count < 2 || symbol->structapp.count > 16) { strcpy(symbol->errtxt, "720: Structured Append count out of range (2-16)"); return ZINT_ERROR_INVALID_OPTION; } if (symbol->structapp.index < 1 || symbol->structapp.index > symbol->structapp.count) { sprintf(symbol->errtxt, "721: Structured Append index out of range (1-%d)", symbol->structapp.count); return ZINT_ERROR_INVALID_OPTION; } if (symbol->structapp.id[0]) { int id, id_len, id1_err, id2_err; for (id_len = 0; id_len < 32 && symbol->structapp.id[id_len]; id_len++); if (id_len > 6) { /* ID1 * 1000 + ID2 */ strcpy(symbol->errtxt, "722: Structured Append ID too long (6 digit maximum)"); return ZINT_ERROR_INVALID_OPTION; } id = to_int((const unsigned char *) symbol->structapp.id, id_len); if (id == -1) { strcpy(symbol->errtxt, "723: Invalid Structured Append ID (digits only)"); return ZINT_ERROR_INVALID_OPTION; } id1 = id / 1000; id2 = id % 1000; id1_err = id1 < 1 || id1 > 254; id2_err = id2 < 1 || id2 > 254; if (id1_err || id2_err) { if (id1_err && id2_err) { sprintf(symbol->errtxt, "724: Structured Append ID1 '%03d' and ID2 '%03d' out of range (001-254) (ID '%03d%03d')", id1, id2, id1, id2); } else if (id1_err) { sprintf(symbol->errtxt, "725: Structured Append ID1 '%03d' out of range (001-254) (ID '%03d%03d')", id1, id1, id2); } else { sprintf(symbol->errtxt, "726: Structured Append ID2 '%03d' out of range (001-254) (ID '%03d%03d')", id2, id1, id2); } return ZINT_ERROR_INVALID_OPTION; } } else { id1 = id2 = 1; } target[tp++] = 233; target[tp++] = (17 - symbol->structapp.count) | ((symbol->structapp.index - 1) << 4); target[tp++] = id1; target[tp++] = id2; } /* gs1 flag values: 0: no gs1, 1: gs1 with FNC1 serparator, 2: GS separator */ if ((symbol->input_mode & 0x07) == GS1_MODE) { if (symbol->output_options & GS1_GS_SEPARATOR) { gs1 = 2; } else { gs1 = 1; } } else { gs1 = 0; } if (gs1) { target[tp++] = 232; if (debug_print) printf("FN1 "); } /* FNC1 */ if (symbol->output_options & READER_INIT) { if (gs1) { strcpy(symbol->errtxt, "521: Cannot encode in GS1 mode and Reader Initialisation at the same time"); return ZINT_ERROR_INVALID_OPTION; } if (symbol->structapp.count) { strcpy(symbol->errtxt, "727: Cannot have Structured Append and Reader Initialisation at the same time"); return ZINT_ERROR_INVALID_OPTION; } target[tp++] = 234; /* Reader Programming */ if (debug_print) printf("RP "); } if (symbol->eci > 0) { /* Encode ECI numbers according to Table 6 */ target[tp++] = 241; /* ECI Character */ if (symbol->eci <= 126) { target[tp++] = (unsigned char) (symbol->eci + 1); } else if (symbol->eci <= 16382) { target[tp++] = (unsigned char) ((symbol->eci - 127) / 254 + 128); target[tp++] = (unsigned char) ((symbol->eci - 127) % 254 + 1); } else { target[tp++] = (unsigned char) ((symbol->eci - 16383) / 64516 + 192); target[tp++] = (unsigned char) (((symbol->eci - 16383) / 254) % 254 + 1); target[tp++] = (unsigned char) ((symbol->eci - 16383) % 254 + 1); } if (debug_print) printf("ECI %d ", symbol->eci + 1); } /* Check for Macro05/Macro06 */ /* "[)>[RS]05[GS]...[RS][EOT]" -> CW 236 */ /* "[)>[RS]06[GS]...[RS][EOT]" -> CW 237 */ if (tp == 0 && sp == 0 && inputlen >= 9 && source[0] == '[' && source[1] == ')' && source[2] == '>' && source[3] == '\x1e' && source[4] == '0' && (source[5] == '5' || source[5] == '6') && source[6] == '\x1d' && source[inputlen - 2] == '\x1e' && source[inputlen - 1] == '\x04') { /* Output macro Codeword */ if (source[5] == '5') { target[tp++] = 236; if (debug_print) printf("Macro05 "); } else { target[tp++] = 237; if (debug_print) printf("Macro06 "); } /* Remove macro characters from input string */ sp = 7; inputlen -= 2; *p_length -= 2; } /* step (a) */ current_mode = DM_ASCII; next_mode = DM_ASCII; while (sp < inputlen) { current_mode = next_mode; /* step (b) - ASCII encodation */ if (current_mode == DM_ASCII) { next_mode = DM_ASCII; if (is_twodigits(source, inputlen, sp)) { target[tp++] = (unsigned char) ((10 * ctoi(source[sp])) + ctoi(source[sp + 1]) + 130); if (debug_print) printf("N%02d ", target[tp - 1] - 130); sp += 2; } else { next_mode = dm_look_ahead_test(source, inputlen, sp, current_mode, 0, gs1, debug_print); if (next_mode != DM_ASCII) { tp = dm_switch_mode(next_mode, target, tp, &b256_start, debug_print); not_first = 0; } else { if (source[sp] & 0x80) { target[tp++] = 235; /* FNC4 */ target[tp++] = (source[sp] - 128) + 1; if (debug_print) printf("FN4 A%02X ", target[tp - 1] - 1); } else { if (gs1 && (source[sp] == '[')) { if (gs1 == 2) { target[tp++] = 29 + 1; /* GS */ if (debug_print) printf("GS "); } else { target[tp++] = 232; /* FNC1 */ if (debug_print) printf("FN1 "); } } else { target[tp++] = source[sp] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } } sp++; } } /* step (c)/(d) C40/TEXT encodation */ } else if (current_mode == DM_C40 || current_mode == DM_TEXT) { next_mode = current_mode; if (process_p == 0 && not_first) { next_mode = dm_look_ahead_test(source, inputlen, sp, current_mode, process_p, gs1, debug_print); } if (next_mode != current_mode) { target[tp++] = 254; /* Unlatch */ next_mode = DM_ASCII; if (debug_print) printf("ASC "); } else { int shift_set, value; const char *ct_shift, *ct_value; if (current_mode == DM_C40) { ct_shift = dm_c40_shift; ct_value = dm_c40_value; } else { ct_shift = dm_text_shift; ct_value = dm_text_value; } if (source[sp] & 0x80) { process_buffer[process_p++] = 1; process_buffer[process_p++] = 30; /* Upper Shift */ shift_set = ct_shift[source[sp] - 128]; value = ct_value[source[sp] - 128]; } else { if (gs1 && (source[sp] == '[')) { if (gs1 == 2) { shift_set = ct_shift[29]; value = ct_value[29]; /* GS */ } else { shift_set = 2; value = 27; /* FNC1 */ } } else { shift_set = ct_shift[source[sp]]; value = ct_value[source[sp]]; } } if (shift_set != 0) { process_buffer[process_p++] = shift_set - 1; } process_buffer[process_p++] = value; if (process_p >= 3) { process_p = dm_ctx_buffer_xfer(process_buffer, process_p, target, &tp, debug_print); } sp++; not_first = 1; } /* step (e) X12 encodation */ } else if (current_mode == DM_X12) { if (!dm_isX12(source[sp])) { next_mode = DM_ASCII; } else { next_mode = DM_X12; if (process_p == 0 && not_first) { next_mode = dm_look_ahead_test(source, inputlen, sp, current_mode, process_p, gs1, debug_print); } } if (next_mode != DM_X12) { process_p = 0; /* Throw away buffer if any */ target[tp++] = 254; /* Unlatch */ next_mode = DM_ASCII; if (debug_print) printf("ASC "); } else { static const char x12_nonalphanum_chars[] = "\015*> "; int value = 0; if ((source[sp] <= '9') && (source[sp] >= '0')) { value = (source[sp] - '0') + 4; } else if ((source[sp] >= 'A') && (source[sp] <= 'Z')) { value = (source[sp] - 'A') + 14; } else { value = posn(x12_nonalphanum_chars, source[sp]); } process_buffer[process_p++] = value; if (process_p >= 3) { process_p = dm_ctx_buffer_xfer(process_buffer, process_p, target, &tp, debug_print); } sp++; not_first = 1; } /* step (f) EDIFACT encodation */ } else if (current_mode == DM_EDIFACT) { if (!dm_isedifact(source[sp], gs1)) { next_mode = DM_ASCII; } else { next_mode = DM_EDIFACT; if (process_p == 3) { /* Note different then spec Step (f)(1), which suggests checking when 0, but this seems to work better in many cases as the switch to ASCII is "free" */ next_mode = dm_look_ahead_test(source, inputlen, sp, current_mode, process_p, gs1, debug_print); } } if (next_mode != DM_EDIFACT) { process_buffer[process_p++] = 31; process_p = dm_edi_buffer_xfer(process_buffer, process_p, target, &tp, 1 /*empty*/, debug_print); next_mode = DM_ASCII; if (debug_print) printf("ASC "); } else { int value = source[sp]; if (value >= 64) { // '@' value -= 64; } process_buffer[process_p++] = value; sp++; not_first = 1; if (process_p >= 4) { process_p = dm_edi_buffer_xfer(process_buffer, process_p, target, &tp, 0 /*empty*/, debug_print); } } /* step (g) Base 256 encodation */ } else if (current_mode == DM_BASE256) { if (gs1 == 1 && source[sp] == '[') { next_mode = DM_ASCII; } else { next_mode = DM_BASE256; if (not_first) { next_mode = dm_look_ahead_test(source, inputlen, sp, current_mode, tp - (b256_start + 1), gs1, debug_print); } } if (next_mode != DM_BASE256) { tp = dm_update_b256_field_length(target, tp, b256_start); /* B.2.1 255-state randomising algorithm */ for (i = b256_start; i < tp; i++) { const int prn = ((149 * (i + 1)) % 255) + 1; target[i] = (unsigned char) ((target[i] + prn) & 0xFF); } /* We switch directly here to avoid flipping back to Base 256 due to `dm_text_sp_cnt()` */ tp = dm_switch_mode(next_mode, target, tp, &b256_start, debug_print); not_first = 0; } else { if (gs1 == 2 && source[sp] == '[') { target[tp++] = 29; /* GS */ } else { target[tp++] = source[sp]; } sp++; not_first = 1; if (debug_print) printf("B%02X ", target[tp - 1]); } } if (tp > 1558) { strcpy(symbol->errtxt, "520: Data too long to fit in symbol"); return ZINT_ERROR_TOO_LONG; } } /* while */ symbols_left = dm_codewords_remaining(symbol, tp, process_p); if (debug_print) printf("\nsymbols_left %d, process_p %d ", symbols_left, process_p); if (current_mode == DM_C40 || current_mode == DM_TEXT) { /* NOTE: changed to follow spec exactly here, only using Shift 1 padded triplets when 2 symbol chars remain. This matches the behaviour of BWIPP but not tec-it, nor figures 4.15.1-1 and 4.15-1-2 in GS1 General Specifications 21.0.1. */ if (debug_print) printf("%s ", current_mode == DM_C40 ? "C40" : "TEX"); if (process_p == 0) { if (symbols_left > 0) { target[tp++] = 254; // Unlatch if (debug_print) printf("ASC "); } } else { if (process_p == 2 && symbols_left == 2) { /* 5.2.5.2 (b) */ process_buffer[process_p++] = 0; // Shift 1 (void) dm_ctx_buffer_xfer(process_buffer, process_p, target, &tp, debug_print); } else if (process_p == 1 && symbols_left <= 2 && dm_isc40text(current_mode, source[inputlen - 1])) { /* 5.2.5.2 (c)/(d) */ if (symbols_left > 1) { /* 5.2.5.2 (c) */ target[tp++] = 254; // Unlatch and encode remaining data in ascii. if (debug_print) printf("ASC "); } target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } else { int cnt, total_cnt = 0; /* Backtrack to last complete triplet (same technique as BWIPP) */ while (sp > 0 && process_p % 3) { sp--; cnt = dm_c40text_cnt(current_mode, gs1, source[sp]); total_cnt += cnt; process_p -= cnt; } tp -= (total_cnt / 3) * 2; target[tp++] = 254; // Unlatch if (debug_print) printf("ASC "); for (; sp < inputlen; sp++) { if (is_twodigits(source, inputlen, sp)) { target[tp++] = (unsigned char) ((10 * ctoi(source[sp])) + ctoi(source[sp + 1]) + 130); if (debug_print) printf("N%02d ", target[tp - 1] - 130); sp++; } else if (source[sp] & 0x80) { target[tp++] = 235; /* FNC4 */ target[tp++] = (source[sp] - 128) + 1; if (debug_print) printf("FN4 A%02X ", target[tp - 1] - 1); } else if (gs1 && source[sp] == '[') { if (gs1 == 2) { target[tp++] = 29 + 1; /* GS */ if (debug_print) printf("GS "); } else { target[tp++] = 232; /* FNC1 */ if (debug_print) printf("FN1 "); } } else { target[tp++] = source[sp] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } } } } } else if (current_mode == DM_X12) { if (debug_print) printf("X12 "); if ((symbols_left == 1) && (process_p == 1)) { // Unlatch not required! target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } else { if (symbols_left > 0) { target[tp++] = (254); // Unlatch. if (debug_print) printf("ASC "); } if (process_p == 1) { target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } else if (process_p == 2) { target[tp++] = source[inputlen - 2] + 1; target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X A%02X ", target[tp - 2] - 1, target[tp - 1] - 1); } } } else if (current_mode == DM_EDIFACT) { if (debug_print) printf("EDI "); if (symbols_left <= 2 && process_p <= symbols_left) { // Unlatch not required! if (process_p == 1) { target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X ", target[tp - 1] - 1); } else if (process_p == 2) { target[tp++] = source[inputlen - 2] + 1; target[tp++] = source[inputlen - 1] + 1; if (debug_print) printf("A%02X A%02X ", target[tp - 2] - 1, target[tp - 1] - 1); } } else { // Append edifact unlatch value (31) and empty buffer if (process_p <= 3) { process_buffer[process_p++] = 31; } (void) dm_edi_buffer_xfer(process_buffer, process_p, target, &tp, 1 /*empty*/, debug_print); } } else if (current_mode == DM_BASE256) { if (symbols_left > 0) { tp = dm_update_b256_field_length(target, tp, b256_start); } /* B.2.1 255-state randomising algorithm */ for (i = b256_start; i < tp; i++) { int prn = ((149 * (i + 1)) % 255) + 1; target[i] = (unsigned char) ((target[i] + prn) & 0xFF); } } if (debug_print) { printf("\nData (%d): ", tp); for (i = 0; i < tp; i++) printf("%d ", target[i]); printf("\n"); } *p_binlen = tp; return 0; } /* add pad bits */ static void dm_add_tail(unsigned char target[], int tp, const int tail_length) { int i, prn, temp; for (i = tail_length; i > 0; i--) { if (i == tail_length) { target[tp++] = 129; /* Pad */ } else { /* B.1.1 253-state randomising algorithm */ prn = ((149 * (tp + 1)) % 253) + 1; temp = 129 + prn; if (temp <= 254) { target[tp++] = (unsigned char) (temp); } else { target[tp++] = (unsigned char) (temp - 254); } } } } static int datamatrix_200(struct zint_symbol *symbol, const unsigned char source[], int inputlen) { int i, skew = 0; unsigned char binary[2200]; int binlen; int symbolsize; int taillength, error_number; int H, W, FH, FW, datablock, bytes, rsblock; const int debug_print = symbol->debug & ZINT_DEBUG_PRINT; /* inputlen may be decremented by 2 if macro character is used */ error_number = dm200encode(symbol, source, binary, &inputlen, &binlen); if (error_number != 0) { return error_number; } symbolsize = dm_get_symbolsize(symbol, binlen); if (binlen > dm_matrixbytes[symbolsize]) { if ((symbol->option_2 >= 1) && (symbol->option_2 <= DMSIZESCOUNT)) { // The symbol size was given by --ver (option_2) strcpy(symbol->errtxt, "522: Input too long for selected symbol size"); } else { strcpy(symbol->errtxt, "523: Data too long to fit in symbol"); } return ZINT_ERROR_TOO_LONG; } H = dm_matrixH[symbolsize]; W = dm_matrixW[symbolsize]; FH = dm_matrixFH[symbolsize]; FW = dm_matrixFW[symbolsize]; bytes = dm_matrixbytes[symbolsize]; datablock = dm_matrixdatablock[symbolsize]; rsblock = dm_matrixrsblock[symbolsize]; taillength = bytes - binlen; if (taillength != 0) { dm_add_tail(binary, binlen, taillength); } if (debug_print) { printf("Pads (%d): ", taillength); for (i = binlen; i < binlen + taillength; i++) printf("%d ", binary[i]); printf("\n"); } // ecc code if (symbolsize == INTSYMBOL144) { skew = 1; } dm_ecc(binary, bytes, datablock, rsblock, skew); if (debug_print) { printf("ECC (%d): ", rsblock * (bytes / datablock)); for (i = bytes; i < bytes + rsblock * (bytes / datablock); i++) printf("%d ", binary[i]); printf("\n"); } #ifdef ZINT_TEST if (symbol->debug & ZINT_DEBUG_TEST) { debug_test_codeword_dump(symbol, binary, skew ? 1558 + 620 : bytes + rsblock * (bytes / datablock)); } #endif { // placement const int NC = W - 2 * (W / FW); const int NR = H - 2 * (H / FH); int x, y, *places; if (!(places = (int *) calloc(NC * NR, sizeof(int)))) { strcpy(symbol->errtxt, "718: Insufficient memory for placement array"); return ZINT_ERROR_MEMORY; } dm_placement(places, NR, NC); for (y = 0; y < H; y += FH) { for (x = 0; x < W; x++) set_module(symbol, (H - y) - 1, x); for (x = 0; x < W; x += 2) set_module(symbol, y, x); } for (x = 0; x < W; x += FW) { for (y = 0; y < H; y++) set_module(symbol, (H - y) - 1, x); for (y = 0; y < H; y += 2) set_module(symbol, (H - y) - 1, x + FW - 1); } #ifdef DM_DEBUG // Print position matrix as in standard for (y = NR - 1; y >= 0; y--) { for (x = 0; x < NC; x++) { const int v = places[(NR - y - 1) * NC + x]; if (x != 0) fprintf(stderr, "|"); fprintf(stderr, "%3d.%2d", (v >> 3), 8 - (v & 7)); } fprintf(stderr, "\n"); } #endif for (y = 0; y < NR; y++) { for (x = 0; x < NC; x++) { const int v = places[(NR - y - 1) * NC + x]; if (v == 1 || (v > 7 && (binary[(v >> 3) - 1] & (1 << (v & 7))))) { set_module(symbol, H - (1 + y + 2 * (y / (FH - 2))) - 1, 1 + x + 2 * (x / (FW - 2))); } } } for (y = 0; y < H; y++) { symbol->row_height[y] = 1; } free(places); } symbol->height = H; symbol->rows = H; symbol->width = W; return error_number; } INTERNAL int datamatrix(struct zint_symbol *symbol, unsigned char source[], int length) { int error_number; if (symbol->option_1 <= 1) { /* ECC 200 */ error_number = datamatrix_200(symbol, source, length); } else { /* ECC 000 - 140 */ strcpy(symbol->errtxt, "524: Older Data Matrix standards are no longer supported"); error_number = ZINT_ERROR_INVALID_OPTION; } return error_number; }