zint/backend/hanxin.c
2020-11-07 19:26:10 +00:00

1669 lines
53 KiB
C

/* hanxin.c - Han Xin Code
libzint - the open source barcode library
Copyright (C) 2009-2020 Robin Stuart <rstuart114@gmail.com>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
*/
/* vim: set ts=4 sw=4 et : */
/* This code attempts to implement Han Xin Code according to ISO/IEC 20830 (draft 2019-10-10) (previously AIMD-015:2010 (Rev 0.8)) */
#include <stdio.h>
#include <string.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include "common.h"
#include "reedsol.h"
#include "hanxin.h"
#include "gb2312.h"
#include "gb18030.h"
#include "assert.h"
/* Find which submode to use for a text character */
static int getsubmode(unsigned int input) {
int submode = 2;
if ((input >= '0') && (input <= '9')) {
submode = 1;
}
if ((input >= 'A') && (input <= 'Z')) {
submode = 1;
}
if ((input >= 'a') && (input <= 'z')) {
submode = 1;
}
return submode;
}
/* Return length of terminator for encoding mode */
static int terminator_length(char mode) {
int result = 0;
switch (mode) {
case 'n':
result = 10;
break;
case 't':
result = 6;
break;
case '1':
case '2':
result = 12;
break;
case 'd':
result = 15;
break;
}
return result;
}
/* Calculate the length of the binary string */
static int calculate_binlength(char mode[], unsigned int source[], const size_t length, int eci) {
size_t i;
char lastmode = '\0';
int est_binlen = 0;
int submode = 1;
int numeric_run = 0;
if (eci != 0) {
est_binlen += 4;
if (eci <= 127) {
est_binlen += 8;
} else if ((eci >= 128) && (eci <= 16383)) {
est_binlen += 16;
} else {
est_binlen += 24;
}
}
i = 0;
do {
if (mode[i] != lastmode) {
if (i > 0) {
est_binlen += terminator_length(lastmode);
}
/* GB 4-byte has indicator for each character (and no terminator) so not included here */
/* Region1/Region2 have special terminator to go directly into each other's mode so not included here */
if (mode[i] != 'f' || ((mode[i] == '1' && lastmode == '2') || (mode[i] == '2' && lastmode == '1'))) {
est_binlen += 4;
}
if (mode[i] == 'b') { /* Byte mode has byte count (and no terminator) */
est_binlen += 13;
}
lastmode = mode[i];
submode = 1;
numeric_run = 0;
}
switch (mode[i]) {
case 'n':
if (numeric_run % 3 == 0) {
est_binlen += 10;
}
numeric_run++;
break;
case 't':
if (getsubmode(source[i]) != submode) {
est_binlen += 6;
submode = getsubmode(source[i]);
}
est_binlen += 6;
break;
case 'b':
est_binlen += source[i] > 0xFF ? 16 : 8;
break;
case '1':
case '2':
est_binlen += 12;
break;
case 'd':
est_binlen += 15;
break;
case 'f':
est_binlen += 25;
i++;
break;
}
i++;
} while (i < length);
est_binlen += terminator_length(lastmode);
return est_binlen;
}
static int isRegion1(unsigned int glyph) {
int first_byte, second_byte;
int valid = 0;
first_byte = (glyph & 0xff00) >> 8;
second_byte = glyph & 0xff;
if ((first_byte >= 0xb0) && (first_byte <= 0xd7)) {
if ((second_byte >= 0xa1) && (second_byte <= 0xfe)) {
valid = 1;
}
}
if ((first_byte >= 0xa1) && (first_byte <= 0xa3)) {
if ((second_byte >= 0xa1) && (second_byte <= 0xfe)) {
valid = 1;
}
}
if ((glyph >= 0xa8a1) && (glyph <= 0xa8c0)) {
valid = 1;
}
return valid;
}
static int isRegion2(unsigned int glyph) {
int first_byte, second_byte;
int valid = 0;
first_byte = (glyph & 0xff00) >> 8;
second_byte = glyph & 0xff;
if ((first_byte >= 0xd8) && (first_byte <= 0xf7)) {
if ((second_byte >= 0xa1) && (second_byte <= 0xfe)) {
valid = 1;
}
}
return valid;
}
static int isDoubleByte(unsigned int glyph) {
int first_byte, second_byte;
int valid = 0;
first_byte = (glyph & 0xff00) >> 8;
second_byte = glyph & 0xff;
if ((first_byte >= 0x81) && (first_byte <= 0xfe)) {
if ((second_byte >= 0x40) && (second_byte <= 0x7e)) {
valid = 1;
}
if ((second_byte >= 0x80) && (second_byte <= 0xfe)) {
valid = 1;
}
}
return valid;
}
static int isFourByte(unsigned int glyph, unsigned int glyph2) {
int first_byte, second_byte;
int third_byte, fourth_byte;
int valid = 0;
first_byte = (glyph & 0xff00) >> 8;
second_byte = glyph & 0xff;
third_byte = (glyph2 & 0xff00) >> 8;
fourth_byte = glyph2 & 0xff;
if ((first_byte >= 0x81) && (first_byte <= 0xfe)) {
if ((second_byte >= 0x30) && (second_byte <= 0x39)) {
if ((third_byte >= 0x81) && (third_byte <= 0xfe)) {
if ((fourth_byte >= 0x30) && (fourth_byte <= 0x39)) {
valid = 1;
}
}
}
}
return valid;
}
/* Convert Text 1 sub-mode character to encoding value, as given in table 3 */
static int lookup_text1(unsigned int input) {
int encoding_value = -1;
if ((input >= '0') && (input <= '9')) {
encoding_value = input - '0';
}
if ((input >= 'A') && (input <= 'Z')) {
encoding_value = input - 'A' + 10;
}
if ((input >= 'a') && (input <= 'z')) {
encoding_value = input - 'a' + 36;
}
return encoding_value;
}
/* Convert Text 2 sub-mode character to encoding value, as given in table 4 */
static int lookup_text2(unsigned int input) {
int encoding_value = -1;
if (input <= 27) {
encoding_value = input;
}
if ((input >= ' ') && (input <= '/')) {
encoding_value = input - ' ' + 28;
}
if ((input >= ':') && (input <= '@')) {
encoding_value = input - ':' + 44;
}
if ((input >= '[') && (input <= 96)) {
encoding_value = input - '[' + 51;
}
if ((input >= '{') && (input <= 127)) {
encoding_value = input - '{' + 57;
}
return encoding_value;
}
/* hx_define_mode() stuff */
/* Bits multiplied by this for costs, so as to be whole integer divisible by 2 and 3 */
#define HX_MULT 6
/* Whether in numeric or not. If in numeric, *p_end is set to position after numeric, and *p_cost is set to per-numeric cost */
static int in_numeric(const unsigned int gbdata[], const size_t length, const unsigned int posn, unsigned int* p_end, unsigned int* p_cost) {
unsigned int i, digit_cnt;
if (posn < *p_end) {
return 1;
}
/* Attempt to calculate the average 'cost' of using numeric mode in number of bits (times HX_MULT) */
for (i = posn; i < length && i < posn + 4 && gbdata[i] >= '0' && gbdata[i] <= '9'; i++);
digit_cnt = i - posn;
if (digit_cnt == 0) {
*p_end = 0;
return 0;
}
*p_end = i;
*p_cost = digit_cnt == 1 ? 60 /* 10 * HX_MULT */ : digit_cnt == 2 ? 30 /* (10 / 2) * HX_MULT */ : 20 /* (10 / 3) * HX_MULT */;
return 1;
}
/* Whether in four-byte or not. If in four-byte, *p_fourbyte is set to position after four-byte, and *p_fourbyte_cost is set to per-position cost */
static int in_fourbyte(const unsigned int gbdata[], const size_t length, const unsigned int posn, unsigned int* p_end, unsigned int* p_cost) {
if (posn < *p_end) {
return 1;
}
if (posn == length - 1 || !isFourByte(gbdata[posn], gbdata[posn + 1])) {
*p_end = 0;
return 0;
}
*p_end = posn + 2;
*p_cost = 75; /* ((4 + 21) / 2) * HX_MULT */
return 1;
}
/* Indexes into mode_types array */
#define HX_N 0 /* Numeric */
#define HX_T 1 /* Text */
#define HX_B 2 /* Binary */
#define HX_1 3 /* Common Chinese Region One */
#define HX_2 4 /* Common Chinese Region Two */
#define HX_D 5 /* GB 18030 2-byte Region */
#define HX_F 6 /* GB 18030 4-byte Region */
/* Note Unicode, GS1 and URI modes not implemented */
#define HX_NUM_MODES 7
/* Initial mode costs */
static unsigned int* hx_head_costs(unsigned int state[]) {
static unsigned int head_costs[HX_NUM_MODES] = {
/* N T B 1 2 D F */
4 * HX_MULT, 4 * HX_MULT, (4 + 13) * HX_MULT, 4 * HX_MULT, 4 * HX_MULT, 4 * HX_MULT, 0
};
(void)state; /* Unused */
return head_costs;
}
/* Cost of switching modes from k to j */
static unsigned int hx_switch_cost(unsigned int state[], const int k, const int j) {
static const unsigned int switch_costs[HX_NUM_MODES][HX_NUM_MODES] = {
/* N T B 1 2 D F */
/*N*/ { 0, (10 + 4) * HX_MULT, (10 + 4 + 13) * HX_MULT, (10 + 4) * HX_MULT, (10 + 4) * HX_MULT, (10 + 4) * HX_MULT, 10 * HX_MULT },
/*T*/ { (6 + 4) * HX_MULT, 0, (6 + 4 + 13) * HX_MULT, (6 + 4) * HX_MULT, (6 + 4) * HX_MULT, (6 + 4) * HX_MULT, 6 * HX_MULT },
/*B*/ { 4 * HX_MULT, 4 * HX_MULT, 0, 4 * HX_MULT, 4 * HX_MULT, 4 * HX_MULT, 0 },
/*1*/ { (12 + 4) * HX_MULT, (12 + 4) * HX_MULT, (12 + 4 + 13) * HX_MULT, 0, 12 * HX_MULT, (12 + 4) * HX_MULT, 12 * HX_MULT },
/*2*/ { (12 + 4) * HX_MULT, (12 + 4) * HX_MULT, (12 + 4 + 13) * HX_MULT, 12 * HX_MULT, 0, (12 + 4) * HX_MULT, 12 * HX_MULT },
/*D*/ { (15 + 4) * HX_MULT, (15 + 4) * HX_MULT, (15 + 4 + 13) * HX_MULT, (15 + 4) * HX_MULT, (15 + 4) * HX_MULT, 0, 15 * HX_MULT },
/*F*/ { 4 * HX_MULT, 4 * HX_MULT, (4 + 13) * HX_MULT, 4 * HX_MULT, 4 * HX_MULT, 4 * HX_MULT, 0 },
};
(void)state; /* Unused */
return switch_costs[k][j];
}
/* Final end-of-data costs */
static unsigned int hx_eod_cost(unsigned int state[], const int k) {
static const unsigned int eod_costs[HX_NUM_MODES] = {
/* N T B 1 2 D F */
10 * HX_MULT, 6 * HX_MULT, 0, 12 * HX_MULT, 12 * HX_MULT, 15 * HX_MULT, 0
};
(void)state; /* Unused */
return eod_costs[k];
}
/* Calculate cost of encoding character */
static void hx_cur_cost(unsigned int state[], const unsigned int gbdata[], const size_t length, const int i, char* char_modes, unsigned int prev_costs[], unsigned int cur_costs[]) {
int cm_i = i * HX_NUM_MODES;
int text1, text2;
unsigned int* p_numeric_end = &state[0];
unsigned int* p_numeric_cost = &state[1];
unsigned int* p_text_submode = &state[2];
unsigned int* p_fourbyte_end = &state[3];
unsigned int* p_fourbyte_cost = &state[4];
if (in_numeric(gbdata, length, i, p_numeric_end, p_numeric_cost)) {
cur_costs[HX_N] = prev_costs[HX_N] + *p_numeric_cost;
char_modes[cm_i + HX_N] = 'n';
}
text1 = lookup_text1(gbdata[i]) != -1;
text2 = lookup_text2(gbdata[i]) != -1;
if (text1 || text2) {
if ((*p_text_submode == 1 && text2) || (*p_text_submode == 2 && text1)) {
cur_costs[HX_T] = prev_costs[HX_T] + 72; /* (6 + 6) * HX_MULT */
*p_text_submode = text2 ? 2 : 1;
} else {
cur_costs[HX_T] = prev_costs[HX_T] + 36; /* 6 * HX_MULT */
}
char_modes[cm_i + HX_T] = 't';
} else {
*p_text_submode = 1;
}
/* Binary mode can encode anything */
cur_costs[HX_B] = prev_costs[HX_B] + (gbdata[i] > 0xFF ? 96 : 48); /* (16 : 8) * HX_MULT */
char_modes[cm_i + HX_B] = 'b';
if (isRegion1(gbdata[i])) {
cur_costs[HX_1] = prev_costs[HX_1] + 72; /* 12 * HX_MULT */
char_modes[cm_i + HX_1] = '1';
}
if (isRegion2(gbdata[i])) {
cur_costs[HX_2] = prev_costs[HX_2] + 72; /* 12 * HX_MULT */
char_modes[cm_i + HX_2] = '2';
}
if (isDoubleByte(gbdata[i])) {
cur_costs[HX_D] = prev_costs[HX_D] + 90; /* 15 * HX_MULT */
char_modes[cm_i + HX_D] = 'd';
}
if (in_fourbyte(gbdata, length, i, p_fourbyte_end, p_fourbyte_cost)) {
cur_costs[HX_F] = prev_costs[HX_F] + *p_fourbyte_cost;
char_modes[cm_i + HX_F] = 'f';
}
}
/* Calculate optimized encoding modes */
static void hx_define_mode(char* mode, const unsigned int gbdata[], const size_t length, const int debug) {
static const char mode_types[] = { 'n', 't', 'b', '1', '2', 'd', 'f', '\0' }; /* Must be in same order as HX_N etc */
unsigned int state[5] = { 0 /*numeric_end*/, 0 /*numeric_cost*/, 1 /*text_submode*/, 0 /*fourbyte_end*/, 0 /*fourbyte_cost*/ };
pn_define_mode(mode, gbdata, length, debug, state, mode_types, HX_NUM_MODES, hx_head_costs, hx_switch_cost, hx_eod_cost, hx_cur_cost);
}
/* Convert input data to binary stream */
static void calculate_binary(char binary[], char mode[], unsigned int source[], const size_t length, const int eci, int debug) {
unsigned int position = 0;
int i, count, encoding_value;
int first_byte, second_byte;
int third_byte, fourth_byte;
int glyph;
int submode;
if (eci != 0) {
/* Encoding ECI assignment number, according to Table 5 */
bin_append(8, 4, binary); // ECI
if (eci <= 127) {
bin_append(eci, 8, binary);
}
if ((eci >= 128) && (eci <= 16383)) {
strcat(binary, "10");
bin_append(eci, 14, binary);
}
if (eci >= 16384) {
strcat(binary, "110");
bin_append(eci, 21, binary);
}
}
do {
int block_length = 0;
int double_byte = 0;
do {
if (mode[position] == 'b' && source[position + block_length] > 0xFF) {
double_byte++;
}
block_length++;
} while (position + block_length < length && mode[position + block_length] == mode[position]);
switch (mode[position]) {
case 'n':
/* Numeric mode */
/* Mode indicator */
bin_append(1, 4, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("Numeric\n");
}
count = 0; /* Suppress gcc -Wmaybe-uninitialized */
i = 0;
while (i < block_length) {
int first = 0;
first = posn(NEON, (char) source[position + i]);
count = 1;
encoding_value = first;
if (i + 1 < block_length && mode[position + i + 1] == 'n') {
int second = posn(NEON, (char) source[position + i + 1]);
count = 2;
encoding_value = (encoding_value * 10) + second;
if (i + 2 < block_length && mode[position + i + 2] == 'n') {
int third = posn(NEON, (char) source[position + i + 2]);
count = 3;
encoding_value = (encoding_value * 10) + third;
}
}
bin_append(encoding_value, 10, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("0x%4x (%d)", encoding_value, encoding_value);
}
i += count;
}
/* Mode terminator depends on number of characters in last group (Table 2) */
switch (count) {
case 1:
bin_append(1021, 10, binary);
break;
case 2:
bin_append(1022, 10, binary);
break;
case 3:
bin_append(1023, 10, binary);
break;
}
if (debug & ZINT_DEBUG_PRINT) {
printf(" (TERM %d)\n", count);
}
break;
case 't':
/* Text mode */
/* Mode indicator */
bin_append(2, 4, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("Text\n");
}
submode = 1;
i = 0;
while (i < block_length) {
if (getsubmode(source[i + position]) != submode) {
/* Change submode */
bin_append(62, 6, binary);
submode = getsubmode(source[i + position]);
if (debug & ZINT_DEBUG_PRINT) {
printf("SWITCH ");
}
}
if (submode == 1) {
encoding_value = lookup_text1(source[i + position]);
} else {
encoding_value = lookup_text2(source[i + position]);
}
bin_append(encoding_value, 6, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("%.2x [ASC %.2x] ", encoding_value, source[i + position]);
}
i++;
}
/* Terminator */
bin_append(63, 6, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
case 'b':
/* Binary Mode */
/* Mode indicator */
bin_append(3, 4, binary);
/* Count indicator */
bin_append(block_length + double_byte, 13, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("Binary (length %d)\n", block_length + double_byte);
}
i = 0;
while (i < block_length) {
/* 8-bit bytes with no conversion */
bin_append(source[i + position], source[i + position] > 0xFF ? 16 : 8, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("%d ", source[i + position]);
}
i++;
}
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
case '1':
/* Region 1 encoding */
/* Mode indicator */
if (position == 0 || mode[position - 1] != '2') { /* Unless previous mode Region 2 */
bin_append(4, 4, binary);
}
if (debug & ZINT_DEBUG_PRINT) {
printf("Region 1\n");
}
i = 0;
while (i < block_length) {
first_byte = (source[i + position] & 0xff00) >> 8;
second_byte = source[i + position] & 0xff;
/* Subset 1 */
glyph = (0x5e * (first_byte - 0xb0)) + (second_byte - 0xa1);
/* Subset 2 */
if ((first_byte >= 0xa1) && (first_byte <= 0xa3)) {
if ((second_byte >= 0xa1) && (second_byte <= 0xfe)) {
glyph = (0x5e * (first_byte - 0xa1)) + (second_byte - 0xa1) + 0xeb0;
}
}
/* Subset 3 */
if ((source[i + position] >= 0xa8a1) && (source[i + position] <= 0xa8c0)) {
glyph = (second_byte - 0xa1) + 0xfca;
}
if (debug & ZINT_DEBUG_PRINT) {
printf("%.4x [GB %.4x] ", glyph, source[i + position]);
}
bin_append(glyph, 12, binary);
i++;
}
/* Terminator */
bin_append(position == length - 1 || mode[position + 1] != '2' ? 4095 : 4094, 12, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
case '2':
/* Region 2 encoding */
/* Mode indicator */
if (position == 0 || mode[position - 1] != '1') { /* Unless previous mode Region 1 */
bin_append(5, 4, binary);
}
if (debug & ZINT_DEBUG_PRINT) {
printf("Region 2\n");
}
i = 0;
while (i < block_length) {
first_byte = (source[i + position] & 0xff00) >> 8;
second_byte = source[i + position] & 0xff;
glyph = (0x5e * (first_byte - 0xd8)) + (second_byte - 0xa1);
if (debug & ZINT_DEBUG_PRINT) {
printf("%.4x [GB %.4x] ", glyph, source[i + position]);
}
bin_append(glyph, 12, binary);
i++;
}
/* Terminator */
bin_append(position == length - 1 || mode[position + 1] != '1' ? 4095 : 4094, 12, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
case 'd':
/* Double byte encoding */
/* Mode indicator */
bin_append(6, 4, binary);
if (debug & ZINT_DEBUG_PRINT) {
printf("Double byte\n");
}
i = 0;
while (i < block_length) {
first_byte = (source[i + position] & 0xff00) >> 8;
second_byte = source[i + position] & 0xff;
if (second_byte <= 0x7e) {
glyph = (0xbe * (first_byte - 0x81)) + (second_byte - 0x40);
} else {
glyph = (0xbe * (first_byte - 0x81)) + (second_byte - 0x41);
}
if (debug & ZINT_DEBUG_PRINT) {
printf("%.4x ", glyph);
}
bin_append(glyph, 15, binary);
i++;
}
/* Terminator */
bin_append(32767, 15, binary);
/* Terminator sequence of length 12 is a mistake
- confirmed by Wang Yi */
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
case 'f':
/* Four-byte encoding */
if (debug & ZINT_DEBUG_PRINT) {
printf("Four byte\n");
}
i = 0;
while (i < block_length) {
/* Mode indicator */
bin_append(7, 4, binary);
first_byte = (source[i + position] & 0xff00) >> 8;
second_byte = source[i + position] & 0xff;
third_byte = (source[i + position + 1] & 0xff00) >> 8;
fourth_byte = source[i + position + 1] & 0xff;
glyph = (0x3138 * (first_byte - 0x81)) + (0x04ec * (second_byte - 0x30)) +
(0x0a * (third_byte - 0x81)) + (fourth_byte - 0x30);
if (debug & ZINT_DEBUG_PRINT) {
printf("%d ", glyph);
}
bin_append(glyph, 21, binary);
i += 2;
}
/* No terminator */
if (debug & ZINT_DEBUG_PRINT) {
printf("\n");
}
break;
}
position += block_length;
} while (position < length);
}
/* Finder pattern for top left of symbol */
static void hx_place_finder_top_left(unsigned char* grid, int size) {
int xp, yp;
int x = 0, y = 0;
char finder[] = {0x7F, 0x40, 0x5F, 0x50, 0x57, 0x57, 0x57};
for (xp = 0; xp < 7; xp++) {
for (yp = 0; yp < 7; yp++) {
if (finder[yp] & 0x40 >> xp) {
grid[((yp + y) * size) + (xp + x)] = 0x11;
} else {
grid[((yp + y) * size) + (xp + x)] = 0x10;
}
}
}
}
/* Finder pattern for top right and bottom left of symbol */
static void hx_place_finder(unsigned char* grid, int size, int x, int y) {
int xp, yp;
char finder[] = {0x7F, 0x01, 0x7D, 0x05, 0x75, 0x75, 0x75};
for (xp = 0; xp < 7; xp++) {
for (yp = 0; yp < 7; yp++) {
if (finder[yp] & 0x40 >> xp) {
grid[((yp + y) * size) + (xp + x)] = 0x11;
} else {
grid[((yp + y) * size) + (xp + x)] = 0x10;
}
}
}
}
/* Finder pattern for bottom right of symbol */
static void hx_place_finder_bottom_right(unsigned char* grid, int size) {
int xp, yp;
int x = size - 7, y = size - 7;
char finder[] = {0x75, 0x75, 0x75, 0x05, 0x7D, 0x01, 0x7F};
for (xp = 0; xp < 7; xp++) {
for (yp = 0; yp < 7; yp++) {
if (finder[yp] & 0x40 >> xp) {
grid[((yp + y) * size) + (xp + x)] = 0x11;
} else {
grid[((yp + y) * size) + (xp + x)] = 0x10;
}
}
}
}
/* Avoid plotting outside symbol or over finder patterns */
static void hx_safe_plot(unsigned char *grid, int size, int x, int y, int value) {
if ((x >= 0) && (x < size)) {
if ((y >= 0) && (y < size)) {
if (grid[(y * size) + x] == 0) {
grid[(y * size) + x] = value;
}
}
}
}
/* Plot an alignment pattern around top and right of a module */
static void hx_plot_alignment(unsigned char *grid, int size, int x, int y, int w, int h) {
int i;
hx_safe_plot(grid, size, x, y, 0x11);
hx_safe_plot(grid, size, x - 1, y + 1, 0x10);
for (i = 1; i <= w; i++) {
/* Top */
hx_safe_plot(grid, size, x - i, y, 0x11);
hx_safe_plot(grid, size, x - i - 1, y + 1, 0x10);
}
for (i = 1; i < h; i++) {
/* Right */
hx_safe_plot(grid, size, x, y + i, 0x11);
hx_safe_plot(grid, size, x - 1, y + i + 1, 0x10);
}
}
/* Plot assistant alignment patterns */
static void hx_plot_assistant(unsigned char *grid, int size, int x, int y) {
hx_safe_plot(grid, size, x - 1, y - 1, 0x10);
hx_safe_plot(grid, size, x, y - 1, 0x10);
hx_safe_plot(grid, size, x + 1, y - 1, 0x10);
hx_safe_plot(grid, size, x - 1, y, 0x10);
hx_safe_plot(grid, size, x, y, 0x11);
hx_safe_plot(grid, size, x + 1, y, 0x10);
hx_safe_plot(grid, size, x - 1, y + 1, 0x10);
hx_safe_plot(grid, size, x, y + 1, 0x10);
hx_safe_plot(grid, size, x + 1, y + 1, 0x10);
}
/* Put static elements in the grid */
static void hx_setup_grid(unsigned char* grid, int size, int version) {
int i, j;
for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {
grid[(i * size) + j] = 0;
}
}
/* Add finder patterns */
hx_place_finder_top_left(grid, size);
hx_place_finder(grid, size, 0, size - 7);
hx_place_finder(grid, size, size - 7, 0);
hx_place_finder_bottom_right(grid, size);
/* Add finder pattern separator region */
for (i = 0; i < 8; i++) {
/* Top left */
grid[(7 * size) + i] = 0x10;
grid[(i * size) + 7] = 0x10;
/* Top right */
grid[(7 * size) + (size - i - 1)] = 0x10;
grid[((size - i - 1) * size) + 7] = 0x10;
/* Bottom left */
grid[(i * size) + (size - 8)] = 0x10;
grid[((size - 8) * size) + i] = 0x10;
/* Bottom right */
grid[((size - 8) * size) + (size - i - 1)] = 0x10;
grid[((size - i - 1) * size) + (size - 8)] = 0x10;
}
/* Reserve function information region */
for (i = 0; i < 9; i++) {
/* Top left */
grid[(8 * size) + i] = 0x10;
grid[(i * size) + 8] = 0x10;
/* Top right */
grid[(8 * size) + (size - i - 1)] = 0x10;
grid[((size - i - 1) * size) + 8] = 0x10;
/* Bottom left */
grid[(i * size) + (size - 9)] = 0x10;
grid[((size - 9) * size) + i] = 0x10;
/* Bottom right */
grid[((size - 9) * size) + (size - i - 1)] = 0x10;
grid[((size - i - 1) * size) + (size - 9)] = 0x10;
}
if (version > 3) {
int k = hx_module_k[version - 1];
int r = hx_module_r[version - 1];
int m = hx_module_m[version - 1];
int x, y, row_switch, column_switch;
int module_height, module_width;
int mod_x, mod_y;
/* Add assistant alignment patterns to left and right */
y = 0;
mod_y = 0;
do {
if (mod_y < m) {
module_height = k;
} else {
module_height = r - 1;
}
if ((mod_y % 2) == 0) {
if ((m % 2) == 1) {
hx_plot_assistant(grid, size, 0, y);
}
} else {
if ((m % 2) == 0) {
hx_plot_assistant(grid, size, 0, y);
}
hx_plot_assistant(grid, size, size - 1, y);
}
mod_y++;
y += module_height;
} while (y < size);
/* Add assistant alignment patterns to top and bottom */
x = (size - 1);
mod_x = 0;
do {
if (mod_x < m) {
module_width = k;
} else {
module_width = r - 1;
}
if ((mod_x % 2) == 0) {
if ((m % 2) == 1) {
hx_plot_assistant(grid, size, x, (size - 1));
}
} else {
if ((m % 2) == 0) {
hx_plot_assistant(grid, size, x, (size - 1));
}
hx_plot_assistant(grid, size, x, 0);
}
mod_x++;
x -= module_width;
} while (x >= 0);
/* Add alignment pattern */
column_switch = 1;
y = 0;
mod_y = 0;
do {
if (mod_y < m) {
module_height = k;
} else {
module_height = r - 1;
}
if (column_switch == 1) {
row_switch = 1;
column_switch = 0;
} else {
row_switch = 0;
column_switch = 1;
}
x = (size - 1);
mod_x = 0;
do {
if (mod_x < m) {
module_width = k;
} else {
module_width = r - 1;
}
if (row_switch == 1) {
if (!(y == 0 && x == (size - 1))) {
hx_plot_alignment(grid, size, x, y, module_width, module_height);
}
row_switch = 0;
} else {
row_switch = 1;
}
mod_x++;
x -= module_width;
} while (x >= 0);
mod_y++;
y += module_height;
} while (y < size);
}
}
/* Calculate error correction codes */
static void hx_add_ecc(unsigned char fullstream[], unsigned char datastream[], int data_codewords, int version, int ecc_level) {
unsigned char data_block[180];
unsigned char ecc_block[36];
int i, j, block;
int input_position = -1;
int output_position = -1;
int table_d1_pos = ((version - 1) * 36) + ((ecc_level - 1) * 9);
for (i = 0; i < 3; i++) {
int batch_size = hx_table_d1[table_d1_pos + (3 * i)];
int data_length = hx_table_d1[table_d1_pos + (3 * i) + 1];
int ecc_length = hx_table_d1[table_d1_pos + (3 * i) + 2];
for (block = 0; block < batch_size; block++) {
for (j = 0; j < data_length; j++) {
input_position++;
output_position++;
data_block[j] = input_position < data_codewords ? datastream[input_position] : 0;
fullstream[output_position] = data_block[j];
}
rs_init_gf(0x163); // x^8 + x^6 + x^5 + x + 1 = 0
rs_init_code(ecc_length, 1);
rs_encode(data_length, data_block, ecc_block);
rs_free();
for (j = 0; j < ecc_length; j++) {
output_position++;
fullstream[output_position] = ecc_block[ecc_length - j - 1];
}
}
}
}
/* Rearrange data in batches of 13 codewords (section 5.8.2) */
static void make_picket_fence(unsigned char fullstream[], unsigned char picket_fence[], int streamsize) {
int i, start;
int output_position = 0;
for (start = 0; start < 13; start++) {
for (i = start; i < streamsize; i += 13) {
if (i < streamsize) {
picket_fence[output_position] = fullstream[i];
output_position++;
}
}
}
}
/* Evaluate a bitmask according to table 9 */
static int hx_evaluate(unsigned char *eval, int size, int pattern) {
int x, y, block, weight;
int result = 0;
char state;
int p;
int a, b, afterCount, beforeCount;
#ifndef _MSC_VER
char local[size * size];
#else
char* local = (char *) _alloca((size * size) * sizeof (char));
#endif
/* all four bitmask variants have been encoded in the 4 bits of the bytes
* that make up the grid array. select them for evaluation according to the
* desired pattern.*/
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
if (eval[(y * size) + x] & 0xf0) {
local[(y * size) + x] = 0;
} else if ((eval[(y * size) + x] & (0x01 << pattern)) != 0) {
local[(y * size) + x] = '1';
} else {
local[(y * size) + x] = '0';
}
}
}
/* Test 1: 1:1:1:1:3 or 3:1:1:1:1 ratio pattern in row/column */
/* Vertical */
for (x = 0; x < size; x++) {
for (y = 0; y < (size - 7); y++) {
if (local[(y * size) + x] == 0) {
continue;
}
p = 0;
for (weight = 0; weight < 7; weight++) {
if (local[((y + weight) * size) + x] == '1') {
p += (0x40 >> weight);
}
}
if ((p == 0x57) || (p == 0x75)) {
/* Pattern found, check before and after */
beforeCount = 0;
for (b = (y - 3); b < y; b++) {
if (b < 0) {
beforeCount++;
} else {
if (local[(b * size) + x] == '0') {
beforeCount++;
} else {
break;
}
}
}
afterCount = 0;
for (a = (y + 7); a <= (y + 9); a++) {
if (a >= size) {
afterCount++;
} else {
if (local[(a * size) + x] == '0') {
afterCount++;
} else {
break;
}
}
}
if ((beforeCount == 3) || (afterCount == 3)) {
/* Pattern is preceeded or followed by light area
3 modules wide */
result += 50;
}
}
}
}
/* Horizontal */
for (y = 0; y < size; y++) {
for (x = 0; x < (size - 7); x++) {
if (local[(y * size) + x] == 0) {
continue;
}
p = 0;
for (weight = 0; weight < 7; weight++) {
if (local[(y * size) + x + weight] == '1') {
p += (0x40 >> weight);
}
}
if ((p == 0x57) || (p == 0x75)) {
/* Pattern found, check before and after */
beforeCount = 0;
for (b = (x - 3); b < x; b++) {
if (b < 0) {
beforeCount++;
} else {
if (local[(y * size) + b] == '0') {
beforeCount++;
} else {
break;
}
}
}
afterCount = 0;
for (a = (x + 7); a <= (x + 9); a++) {
if (a >= size) {
afterCount++;
} else {
if (local[(y * size) + a] == '0') {
afterCount++;
} else {
break;
}
}
}
if ((beforeCount == 3) || (afterCount == 3)) {
/* Pattern is preceeded or followed by light area
3 modules wide */
result += 50;
}
}
}
}
/* Test 2: Adjacent modules in row/column in same colour */
/* In AIMD-15 section 5.8.3.2 it is stated... “In Table 9 below, i refers to the row
* position of the module.” - however i being the length of the run of the
* same colour (i.e. "block" below) in the same fashion as ISO/IEC 18004
* makes more sense. -- Confirmed by Wang Yi */
/* Fixed in ISO/IEC 20830 (draft 2019-10-10) section 5.8.3.2 "In Table 12 below, i refers to the modules with same color." */
/* Vertical */
for (x = 0; x < size; x++) {
block = 0;
state = 0;
for (y = 0; y < size; y++) {
if (local[(y * size) + x] == 0) {
if (block >= 3) {
result += (3 + block) * 4;
}
block = 0;
state = 0;
} else if (local[(y * size) + x] == state || state == 0) {
block++;
state = local[(y * size) + x];
} else {
if (block >= 3) {
result += (3 + block) * 4;
}
block = 1;
state = local[(y * size) + x];
}
}
if (block >= 3) {
result += (3 + block) * 4;
}
}
/* Horizontal */
for (y = 0; y < size; y++) {
state = local[y * size];
block = 0;
for (x = 0; x < size; x++) {
if (local[(y * size) + x] == 0) {
if (block >= 3) {
result += (3 + block) * 4;
}
block = 0;
state = 0;
} else if (local[(y * size) + x] == state || state == 0) {
block++;
state = local[(y * size) + x];
} else {
if (block >= 3) {
result += (3 + block) * 4;
}
block = 1;
state = local[(y * size) + x];
}
}
if (block >= 3) {
result += (3 + block) * 4;
}
}
return result;
}
/* Apply the four possible bitmasks for evaluation */
/* TODO: Haven't been able to replicate (or even get close to) the penalty scores in ISO/IEC 20830 (draft 2019-10-10) Annex K examples */
static int hx_apply_bitmask(unsigned char *grid, int size) {
int x, y;
int i, j;
int pattern, penalty[4];
int best_pattern, best_val;
int bit;
unsigned char p;
#ifndef _MSC_VER
unsigned char mask[(unsigned int)(size * size)]; /* Cast to suppress gcc -Walloc-size-larger-than */
unsigned char eval[(unsigned int)(size * size)];
#else
unsigned char* mask = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
unsigned char* eval = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
#endif
/* Perform data masking */
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
mask[(y * size) + x] = 0x00;
j = x + 1;
i = y + 1;
if (!(grid[(y * size) + x] & 0xf0)) {
if ((i + j) % 2 == 0) {
mask[(y * size) + x] += 0x02;
}
if ((((i + j) % 3) + (j % 3)) % 2 == 0) {
mask[(y * size) + x] += 0x04;
}
if (((i % j) + (j % i) + (i % 3) + (j % 3)) % 2 == 0) {
mask[(y * size) + x] += 0x08;
}
}
}
}
// apply data masks to grid, result in eval
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
if (grid[(y * size) + x] & 0xf0) {
p = 0xf0;
} else if (grid[(y * size) + x] & 0x01) {
p = 0x0f;
} else {
p = 0x00;
}
eval[(y * size) + x] = mask[(y * size) + x] ^ p;
}
}
/* Evaluate result */
for (pattern = 0; pattern < 4; pattern++) {
penalty[pattern] = hx_evaluate(eval, size, pattern);
}
best_pattern = 0;
best_val = penalty[0];
for (pattern = 1; pattern < 4; pattern++) {
if (penalty[pattern] < best_val) {
best_pattern = pattern;
best_val = penalty[pattern];
}
}
/* Apply mask */
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
bit = 0;
switch (best_pattern) {
case 0: if (mask[(y * size) + x] & 0x01) {
bit = 1;
}
break;
case 1: if (mask[(y * size) + x] & 0x02) {
bit = 1;
}
break;
case 2: if (mask[(y * size) + x] & 0x04) {
bit = 1;
}
break;
case 3: if (mask[(y * size) + x] & 0x08) {
bit = 1;
}
break;
}
if (bit == 1) {
if (grid[(y * size) + x] & 0x01) {
grid[(y * size) + x] = 0x00;
} else {
grid[(y * size) + x] = 0x01;
}
}
}
}
return best_pattern;
}
/* Han Xin Code - main */
INTERNAL int han_xin(struct zint_symbol *symbol, const unsigned char source[], size_t length) {
int est_binlen;
int ecc_level = symbol->option_1;
int i, j, version;
int full_multibyte;
int data_codewords = 0, size;
int codewords;
int bitmask;
int bin_len;
char function_information[36];
unsigned char fi_cw[3] = {0, 0, 0};
unsigned char fi_ecc[4];
#ifndef _MSC_VER
unsigned int gbdata[(length + 1) * 2];
char mode[length + 1];
#else
unsigned int* gbdata = (unsigned int *) _alloca(((length + 1) * 2) * sizeof (unsigned int));
char* mode = (char *) _alloca((length + 1) * sizeof (char));
char* binary;
unsigned char *datastream;
unsigned char *fullstream;
unsigned char *picket_fence;
unsigned char *grid;
#endif
full_multibyte = symbol->option_3 == ZINT_FULL_MULTIBYTE; /* If set use Hanzi mode in DATA_MODE or for single-byte Latin */
if ((symbol->input_mode & 0x07) == DATA_MODE) {
gb18030_cpy(source, &length, gbdata, full_multibyte);
} else {
int done = 0;
if (symbol->eci != 29) { /* Unless ECI 29 (GB) */
/* Try single byte (Latin) conversion first */
int error_number = gb18030_utf8tosb(symbol->eci && symbol->eci <= 899 ? symbol->eci : 3, source, &length, gbdata, full_multibyte);
if (error_number == 0) {
done = 1;
} else if (symbol->eci && symbol->eci <= 899) {
symbol->err_origin = 575;
strcpy(symbol->errtxt, _("Invalid character in data"));
return error_number;
}
}
if (!done) {
/* Try GB 18030 */
int error_number = gb18030_utf8tomb(symbol, source, &length, gbdata);
if (error_number != 0) {
return error_number;
}
}
}
hx_define_mode(mode, gbdata, length, symbol->debug);
est_binlen = calculate_binlength(mode, gbdata, length, symbol->eci);
#ifndef _MSC_VER
char binary[est_binlen + 1];
#else
binary = (char *) _alloca((est_binlen + 1) * sizeof (char));
#endif
memset(binary, 0, (est_binlen + 1) * sizeof (char));
if ((ecc_level <= 0) || (ecc_level >= 5)) {
ecc_level = 1;
}
calculate_binary(binary, mode, gbdata, length, symbol->eci, symbol->debug);
bin_len = strlen(binary);
codewords = bin_len / 8;
if (bin_len % 8 != 0) {
codewords++;
}
version = 85;
for (i = 84; i > 0; i--) {
switch (ecc_level) {
case 1:
if (hx_data_codewords_L1[i - 1] > codewords) {
version = i;
data_codewords = hx_data_codewords_L1[i - 1];
}
break;
case 2:
if (hx_data_codewords_L2[i - 1] > codewords) {
version = i;
data_codewords = hx_data_codewords_L2[i - 1];
}
break;
case 3:
if (hx_data_codewords_L3[i - 1] > codewords) {
version = i;
data_codewords = hx_data_codewords_L3[i - 1];
}
break;
case 4:
if (hx_data_codewords_L4[i - 1] > codewords) {
version = i;
data_codewords = hx_data_codewords_L4[i - 1];
}
break;
default:
assert(0);
break;
}
}
if (version == 85) {
symbol->err_origin = 541;
strcpy(symbol->errtxt, _("Input too long for selected error correction level"));
return ZINT_ERROR_TOO_LONG;
}
if ((symbol->option_2 < 0) || (symbol->option_2 > 84)) {
symbol->option_2 = 0;
}
if (symbol->option_2 > version) {
version = symbol->option_2;
}
if ((symbol->option_2 != 0) && (symbol->option_2 < version)) {
symbol->err_origin = 542;
strcpy(symbol->errtxt, _("Input too long for selected symbol size"));
return ZINT_ERROR_TOO_LONG;
}
/* If there is spare capacity, increase the level of ECC */
if (symbol->option_1 == -1 || symbol->option_1 != ecc_level) { /* Unless explicitly specified (within min/max bounds) by user */
if ((ecc_level == 1) && (codewords < hx_data_codewords_L2[version - 1])) {
ecc_level = 2;
data_codewords = hx_data_codewords_L2[version - 1];
}
if ((ecc_level == 2) && (codewords < hx_data_codewords_L3[version - 1])) {
ecc_level = 3;
data_codewords = hx_data_codewords_L3[version - 1];
}
if ((ecc_level == 3) && (codewords < hx_data_codewords_L4[version - 1])) {
ecc_level = 4;
data_codewords = hx_data_codewords_L4[version - 1];
}
}
size = (version * 2) + 21;
#ifndef _MSC_VER
unsigned char datastream[data_codewords];
unsigned char fullstream[hx_total_codewords[version - 1]];
unsigned char picket_fence[hx_total_codewords[version - 1]];
unsigned char grid[size * size];
#else
datastream = (unsigned char *) _alloca((data_codewords) * sizeof (unsigned char));
fullstream = (unsigned char *) _alloca((hx_total_codewords[version - 1]) * sizeof (unsigned char));
picket_fence = (unsigned char *) _alloca((hx_total_codewords[version - 1]) * sizeof (unsigned char));
grid = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
#endif
for (i = 0; i < data_codewords; i++) {
datastream[i] = 0;
}
for (i = 0; i < bin_len; i++) {
if (binary[i] == '1') {
datastream[i / 8] += 0x80 >> (i % 8);
}
}
if (symbol->debug & ZINT_DEBUG_PRINT) {
printf("Datastream length: %d\n", data_codewords);
printf("Datastream:\n");
for (i = 0; i < data_codewords; i++) {
printf("%.2x ", datastream[i]);
}
printf("\n");
}
#ifdef ZINT_TEST
if (symbol->debug & ZINT_DEBUG_TEST) debug_test_codeword_dump(symbol, datastream, data_codewords);
#endif
hx_setup_grid(grid, size, version);
hx_add_ecc(fullstream, datastream, data_codewords, version, ecc_level);
make_picket_fence(fullstream, picket_fence, hx_total_codewords[version - 1]);
/* Populate grid */
j = 0;
for (i = 0; i < (size * size); i++) {
if (grid[i] == 0x00) {
if (j < (hx_total_codewords[version - 1] * 8)) {
if (picket_fence[(j / 8)] & (0x80 >> (j % 8))) {
grid[i] = 0x01;
}
j++;
}
}
}
bitmask = hx_apply_bitmask(grid, size);
/* Form function information string */
for (i = 0; i < 34; i++) {
if (i % 2) {
function_information[i] = '1';
} else {
function_information[i] = '0';
}
}
function_information[34] = '\0';
for (i = 0; i < 8; i++) {
if ((version + 20) & (0x80 >> i)) {
function_information[i] = '1';
} else {
function_information[i] = '0';
}
}
for (i = 0; i < 2; i++) {
if ((ecc_level - 1) & (0x02 >> i)) {
function_information[i + 8] = '1';
} else {
function_information[i + 8] = '0';
}
}
for (i = 0; i < 2; i++) {
if (bitmask & (0x02 >> i)) {
function_information[i + 10] = '1';
} else {
function_information[i + 10] = '0';
}
}
for (i = 0; i < 3; i++) {
for (j = 0; j < 4; j++) {
if (function_information[(i * 4) + j] == '1') {
fi_cw[i] += (0x08 >> j);
}
}
}
rs_init_gf(0x13);
rs_init_code(4, 1);
rs_encode(3, fi_cw, fi_ecc);
rs_free();
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
if (fi_ecc[3 - i] & (0x08 >> j)) {
function_information[(i * 4) + j + 12] = '1';
} else {
function_information[(i * 4) + j + 12] = '0';
}
}
}
/* Add function information to symbol */
for (i = 0; i < 9; i++) {
if (function_information[i] == '1') {
grid[(8 * size) + i] = 0x01;
grid[((size - 8 - 1) * size) + (size - i - 1)] = 0x01;
}
if (function_information[i + 8] == '1') {
grid[((8 - i) * size) + 8] = 0x01;
grid[((size - 8 - 1 + i) * size) + (size - 8 - 1)] = 0x01;
}
if (function_information[i + 17] == '1') {
grid[(i * size) + (size - 1 - 8)] = 0x01;
grid[((size - 1 - i) * size) + 8] = 0x01;
}
if (function_information[i + 25] == '1') {
grid[(8 * size) + (size - 1 - 8 + i)] = 0x01;
grid[((size - 1 - 8) * size) + (8 - i)] = 0x01;
}
}
symbol->width = size;
symbol->rows = size;
for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {
if (grid[(i * size) + j] & 0x01) {
set_module(symbol, i, j);
}
}
symbol->row_height[i] = 1;
}
return 0;
}