mirror of
https://github.com/zint/zint
synced 2024-11-16 20:57:25 +13:00
411f083f57
Resolves X-Y coord flipping reported by John Mortlock Fixes #70
1691 lines
58 KiB
C
1691 lines
58 KiB
C
/* aztec.c - Handles Aztec 2D Symbols */
|
|
|
|
/*
|
|
libzint - the open source barcode library
|
|
Copyright (C) 2009-2017 Robin Stuart <rstuart114@gmail.com>
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. Neither the name of the project nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#ifdef _MSC_VER
|
|
#include <malloc.h>
|
|
#endif
|
|
#include "common.h"
|
|
#include "aztec.h"
|
|
#include "reedsol.h"
|
|
|
|
static int AztecMap[22801];
|
|
|
|
static int count_doubles(const unsigned char source[], const int posn, const size_t src_len) {
|
|
int c = 0;
|
|
int i = posn;
|
|
int cond = 1;
|
|
|
|
do {
|
|
if (((source[i] == '.') || (source[i] == ',')) && (source[i + 1] == ' ')) {
|
|
c++;
|
|
} else {
|
|
cond = 0;
|
|
}
|
|
i += 2;
|
|
} while ((i < src_len) && cond);
|
|
|
|
return c;
|
|
}
|
|
|
|
static int count_cr(char source[], int posn, int length) {
|
|
int c = 0;
|
|
int i = posn;
|
|
int cond = 1;
|
|
|
|
do {
|
|
if (source[i] == 13) {
|
|
c++;
|
|
} else {
|
|
cond = 0;
|
|
}
|
|
i++;
|
|
} while ((i < length) && cond);
|
|
|
|
return c;
|
|
}
|
|
|
|
static int count_dotcomma(char source[], int posn, int length) {
|
|
int c = 0;
|
|
int i = posn;
|
|
int cond = 1;
|
|
|
|
do {
|
|
if ((source[i] == '.') || (source[i] == ',')) {
|
|
c++;
|
|
} else {
|
|
cond = 0;
|
|
}
|
|
i++;
|
|
} while ((i < length) && cond);
|
|
|
|
return c;
|
|
}
|
|
|
|
static int count_spaces(char source[], int posn, int length) {
|
|
int c = 0;
|
|
int i = posn;
|
|
int cond = 1;
|
|
|
|
do {
|
|
if (source[i] == ' ') {
|
|
c++;
|
|
} else {
|
|
cond = 0;
|
|
}
|
|
i++;
|
|
} while ((i < length) && cond);
|
|
|
|
return c;
|
|
}
|
|
|
|
static char get_next_mode(char encode_mode[], const size_t src_len, const int posn) {
|
|
int i = posn;
|
|
|
|
do {
|
|
i++;
|
|
} while ((i < src_len) && (encode_mode[i] == encode_mode[posn]));
|
|
if (i >= src_len) {
|
|
return 'E';
|
|
} else {
|
|
return encode_mode[i];
|
|
}
|
|
}
|
|
|
|
static int aztec_text_process(const unsigned char source[], const size_t src_len, char binary_string[], const int gs1, const int eci, const int debug) {
|
|
|
|
char *encode_mode;
|
|
int i, j;
|
|
char current_mode;
|
|
int count;
|
|
char next_mode;
|
|
char *reduced_source;
|
|
char *reduced_encode_mode;
|
|
int reduced_length;
|
|
int byte_mode = 0;
|
|
|
|
encode_mode=(char*)malloc(src_len + 1);
|
|
reduced_source=(char*)malloc(src_len + 1);
|
|
reduced_encode_mode=(char*)malloc(src_len + 1);
|
|
|
|
if ((!encode_mode) ||
|
|
(!reduced_source) ||
|
|
(!reduced_encode_mode)) {
|
|
free(encode_mode);
|
|
free(reduced_source);
|
|
free(reduced_encode_mode);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < src_len; i++) {
|
|
if (source[i] > 128) {
|
|
encode_mode[i] = 'B';
|
|
} else {
|
|
encode_mode[i] = AztecModes[(int) source[i]];
|
|
}
|
|
}
|
|
|
|
// Deal first with letter combinations which can be combined to one codeword
|
|
// Combinations are (CR LF) (. SP) (, SP) (: SP) in Punct mode
|
|
current_mode = 'U';
|
|
for (i = 0; i < src_len - 1; i++) {
|
|
// Combination (CR LF) should always be in Punct mode
|
|
if ((source[i] == 13) && (source[i + 1] == 10)) {
|
|
encode_mode[i] = 'P';
|
|
encode_mode[i + 1] = 'P';
|
|
}
|
|
|
|
// Combination (: SP) should always be in Punct mode
|
|
if ((source[i] == ':') && (source[i + 1] == ' ')) {
|
|
encode_mode[i + 1] = 'P';
|
|
}
|
|
|
|
// Combinations (. SP) and (, SP) sometimes use fewer bits in Digit mode
|
|
if (((source[i] == '.') || (source[i] == ',')) && (source[i + 1] == ' ') && (encode_mode[i] == 'X')) {
|
|
count = count_doubles(source, i, src_len);
|
|
next_mode = get_next_mode(encode_mode, src_len, i);
|
|
|
|
if (current_mode == 'U') {
|
|
if ((next_mode == 'D') && (count <= 5)) {
|
|
for (j = 0; j < (2 * count); j++) {
|
|
encode_mode[i + j] = 'D';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'L') {
|
|
if ((next_mode == 'U') && (count == 1)) {
|
|
encode_mode[i] = 'D';
|
|
encode_mode[i + 1] = 'D';
|
|
}
|
|
if ((next_mode == 'D') && (count <= 4)) {
|
|
for (j = 0; j < (2 * count); j++) {
|
|
encode_mode[i + j] = 'D';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'M') {
|
|
if ((next_mode == 'D') && (count == 1)) {
|
|
encode_mode[i] = 'D';
|
|
encode_mode[i + 1] = 'D';
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'D') {
|
|
if ((next_mode != 'D') && (count <= 4)) {
|
|
for (j = 0; j < (2 * count); j++) {
|
|
encode_mode[i + j] = 'D';
|
|
}
|
|
}
|
|
if ((next_mode == 'D') && (count <= 7)) {
|
|
for (j = 0; j < (2 * count); j++) {
|
|
encode_mode[i + j] = 'D';
|
|
}
|
|
}
|
|
}
|
|
|
|
// Default is Punct mode
|
|
if (encode_mode[i] == 'X') {
|
|
encode_mode[i] = 'P';
|
|
encode_mode[i + 1] = 'P';
|
|
}
|
|
}
|
|
|
|
if ((encode_mode[i] != 'X') && (encode_mode[i] != 'B')) {
|
|
current_mode = encode_mode[i];
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("First Pass:\n");
|
|
for (i = 0; i < src_len; i++) {
|
|
printf("%c", encode_mode[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
// Reduce two letter combinations to one codeword marked as [abcd] in Punct mode
|
|
i = 0;
|
|
j = 0;
|
|
do {
|
|
if ((source[i] == 13) && (source[i + 1] == 10)) { // CR LF
|
|
reduced_source[j] = 'a';
|
|
reduced_encode_mode[j] = encode_mode[i];
|
|
i += 2;
|
|
} else if (((source[i] == '.') && (source[i + 1] == ' ')) && (encode_mode[i] == 'P')) {
|
|
reduced_source[j] = 'b';
|
|
reduced_encode_mode[j] = encode_mode[i];
|
|
i += 2;
|
|
} else if (((source[i] == ',') && (source[i + 1] == ' ')) && (encode_mode[i] == 'P')) {
|
|
reduced_source[j] = 'c';
|
|
reduced_encode_mode[j] = encode_mode[i];
|
|
i += 2;
|
|
} else if ((source[i] == ':') && (source[i + 1] == ' ')) {
|
|
reduced_source[j] = 'd';
|
|
reduced_encode_mode[j] = encode_mode[i];
|
|
i += 2;
|
|
} else {
|
|
reduced_source[j] = source[i];
|
|
reduced_encode_mode[j] = encode_mode[i];
|
|
i++;
|
|
}
|
|
j++;
|
|
} while (i < src_len);
|
|
|
|
reduced_length = j;
|
|
|
|
current_mode = 'U';
|
|
for(i = 0; i < reduced_length; i++) {
|
|
|
|
// Resolve Carriage Return (CR) which can be Punct or Mixed mode
|
|
if (reduced_source[i] == 13) {
|
|
count = count_cr(reduced_source, i, reduced_length);
|
|
next_mode = get_next_mode(reduced_encode_mode, reduced_length, i);
|
|
|
|
if ((current_mode == 'U') && ((next_mode == 'U') || (next_mode == 'B')) && (count == 1)) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
|
|
if ((current_mode == 'L') && ((next_mode == 'L') || (next_mode == 'B')) && (count == 1)) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
|
|
if ((current_mode == 'P') || (next_mode == 'P')) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
|
|
if (current_mode == 'D') {
|
|
if (((next_mode == 'E') || (next_mode == 'U') || (next_mode == 'D') || (next_mode == 'B')) && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'P';
|
|
}
|
|
}
|
|
if ((next_mode == 'L') && (count == 1)) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
}
|
|
|
|
// Default is Mixed mode
|
|
if (reduced_encode_mode[i] == 'X') {
|
|
reduced_encode_mode[i] = 'M';
|
|
}
|
|
}
|
|
|
|
// Resolve full stop and comma which can be in Punct or Digit mode
|
|
if ((reduced_source[i] == '.') || (reduced_source[i] == ',')) {
|
|
count = count_dotcomma(reduced_source, i, reduced_length);
|
|
next_mode = get_next_mode(reduced_encode_mode, reduced_length, i);
|
|
|
|
if (current_mode == 'U') {
|
|
if (((next_mode == 'U') || (next_mode == 'L') || (next_mode == 'M') || (next_mode == 'B')) && (count == 1)) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'L') {
|
|
if ((next_mode == 'L') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'P';
|
|
}
|
|
}
|
|
if (((next_mode == 'M') || (next_mode == 'B')) && (count == 1)) {
|
|
reduced_encode_mode[i] = 'P';
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'M') {
|
|
if (((next_mode == 'E') || (next_mode == 'U') || (next_mode == 'L') || (next_mode == 'M')) && (count <= 4)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'P';
|
|
}
|
|
}
|
|
if ((next_mode == 'B') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'P';
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'P') && (next_mode != 'D') && (count <= 9)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'P';
|
|
}
|
|
}
|
|
|
|
// Default is Digit mode
|
|
if (reduced_encode_mode[i] == 'X') {
|
|
reduced_encode_mode[i] = 'D';
|
|
}
|
|
}
|
|
|
|
// Resolve Space (SP) which can be any mode except Punct
|
|
if (reduced_source[i] == ' ') {
|
|
count = count_spaces(reduced_source, i, reduced_length);
|
|
next_mode = get_next_mode(reduced_encode_mode, reduced_length, i);
|
|
|
|
if (current_mode == 'U') {
|
|
if ((next_mode == 'E') && (count <= 5)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'U';
|
|
}
|
|
}
|
|
if (((next_mode == 'U') || (next_mode == 'L') || (next_mode == 'M') || (next_mode == 'P') || (next_mode == 'B')) && (count <= 9)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'U';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'L') {
|
|
if ((next_mode == 'E') && (count <= 5)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'L';
|
|
}
|
|
}
|
|
if ((next_mode == 'U') && (count == 1)) {
|
|
reduced_encode_mode[i] = 'L';
|
|
}
|
|
if ((next_mode == 'L') && (count <= 14)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'L';
|
|
}
|
|
}
|
|
if (((next_mode == 'M') || (next_mode == 'P') || (next_mode == 'B')) && (count <= 9)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'L';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'M') {
|
|
if (((next_mode == 'E') || (next_mode == 'U')) && (count <= 9)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'M';
|
|
}
|
|
}
|
|
|
|
if (((next_mode == 'L') || (next_mode == 'B')) && (count <= 14)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'M';
|
|
}
|
|
}
|
|
|
|
if (((next_mode == 'M') || (next_mode == 'P')) && (count <= 19)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'M';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'P') {
|
|
if ((next_mode == 'E') && (count <= 5)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'U';
|
|
}
|
|
}
|
|
|
|
if (((next_mode == 'U') || (next_mode == 'L') || (next_mode == 'M') || (next_mode == 'P') || (next_mode == 'B')) && (count <= 9)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'U';
|
|
}
|
|
}
|
|
}
|
|
|
|
// Default is Digit mode
|
|
if (reduced_encode_mode[i] == 'X') {
|
|
reduced_encode_mode[i] = 'D';
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] != 'B') {
|
|
current_mode = reduced_encode_mode[i];
|
|
}
|
|
}
|
|
|
|
// Decide when to use P/S instead of P/L and U/S instead of U/L
|
|
current_mode = 'U';
|
|
for(i = 0; i < reduced_length; i++) {
|
|
|
|
if (reduced_encode_mode[i] != current_mode) {
|
|
|
|
for (count = 0; ((i + count) <= reduced_length) && (reduced_encode_mode[i + count] == reduced_encode_mode[i]); count++);
|
|
next_mode = get_next_mode(reduced_encode_mode, reduced_length, i);
|
|
|
|
if (reduced_encode_mode[i] == 'P') {
|
|
if ((current_mode == 'U') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'p';
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'L') && (next_mode != 'U') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'p';
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'L') && (next_mode == 'U') && (count == 1)) {
|
|
reduced_encode_mode[i] = 'p';
|
|
}
|
|
|
|
if ((current_mode == 'M') && (next_mode != 'M') && (count == 1)) {
|
|
reduced_encode_mode[i] = 'p';
|
|
}
|
|
|
|
if ((current_mode == 'M') && (next_mode == 'M') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'p';
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'D') && (next_mode != 'D') && (count <= 3)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'p';
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'D') && (next_mode == 'D') && (count <= 6)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'p';
|
|
}
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] == 'U') {
|
|
if ((current_mode == 'L') && ((next_mode == 'L') || (next_mode == 'M')) && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'u';
|
|
}
|
|
}
|
|
|
|
if ((current_mode == 'L') && ((next_mode == 'E') || (next_mode == 'D') || (next_mode == 'B') || (next_mode == 'P')) && (count == 1)) {
|
|
reduced_encode_mode[i] = 'u';
|
|
}
|
|
|
|
if ((current_mode == 'D') && (next_mode == 'D') && (count == 1)) {
|
|
reduced_encode_mode[i] = 'u';
|
|
}
|
|
|
|
if ((current_mode == 'D') && (next_mode == 'P') && (count <= 2)) {
|
|
for (j = 0; j < count; j++) {
|
|
reduced_encode_mode[i + j] = 'u';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((reduced_encode_mode[i] != 'p') && (reduced_encode_mode[i] != 'u') && (reduced_encode_mode[i] != 'B')) {
|
|
current_mode = reduced_encode_mode[i];
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
for (i = 0; i < reduced_length; i++) {
|
|
printf("%c", reduced_source[i]);
|
|
}
|
|
printf("\n");
|
|
for (i = 0; i < reduced_length; i++) {
|
|
printf("%c", reduced_encode_mode[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
strcpy(binary_string, "");
|
|
|
|
if (gs1) {
|
|
bin_append(0, 5, binary_string); // P/S
|
|
bin_append(0, 5, binary_string); // FLG(n)
|
|
bin_append(0, 3, binary_string); // FLG(0)
|
|
}
|
|
|
|
if (eci != 3) {
|
|
bin_append(0, 5, binary_string); // P/S
|
|
bin_append(0, 5, binary_string); // FLG(n)
|
|
if (eci < 10) {
|
|
bin_append(1, 3, binary_string); // FLG(1)
|
|
bin_append(2 + eci, 4, binary_string);
|
|
}
|
|
if ((eci >= 10) && (eci <= 99)) {
|
|
bin_append(2, 3, binary_string); // FLG(2)
|
|
bin_append(2 + (eci / 10), 4, binary_string);
|
|
bin_append(2 + (eci % 10), 4, binary_string);
|
|
}
|
|
if ((eci >= 100) && (eci <= 999)) {
|
|
bin_append(3, 3, binary_string); // FLG(3)
|
|
bin_append(2 + (eci / 100), 4, binary_string);
|
|
bin_append(2 + ((eci % 100) / 10), 4, binary_string);
|
|
bin_append(2 + (eci % 10), 4, binary_string);
|
|
}
|
|
if ((eci >= 1000) && (eci <= 9999)) {
|
|
bin_append(4, 3, binary_string); // FLG(4)
|
|
bin_append(2 + (eci / 1000), 4, binary_string);
|
|
bin_append(2 + ((eci % 1000) / 100), 4, binary_string);
|
|
bin_append(2 + ((eci % 100) / 10), 4, binary_string);
|
|
bin_append(2 + (eci % 10), 4, binary_string);
|
|
}
|
|
if ((eci >= 10000) && (eci <= 99999)) {
|
|
bin_append(5, 3, binary_string); // FLG(5)
|
|
bin_append(2 + (eci / 10000), 4, binary_string);
|
|
bin_append(2 + ((eci % 10000) / 1000), 4, binary_string);
|
|
bin_append(2 + ((eci % 1000) / 100), 4, binary_string);
|
|
bin_append(2 + ((eci % 100) / 10), 4, binary_string);
|
|
bin_append(2 + (eci % 10), 4, binary_string);
|
|
}
|
|
if (eci >= 100000) {
|
|
bin_append(6, 3, binary_string); // FLG(6)
|
|
bin_append(2 + (eci / 100000), 4, binary_string);
|
|
bin_append(2 + ((eci % 100000) / 10000), 4, binary_string);
|
|
bin_append(2 + ((eci % 10000) / 1000), 4, binary_string);
|
|
bin_append(2 + ((eci % 1000) / 100), 4, binary_string);
|
|
bin_append(2 + ((eci % 100) / 10), 4, binary_string);
|
|
bin_append(2 + (eci % 10), 4, binary_string);
|
|
}
|
|
}
|
|
|
|
current_mode = 'U';
|
|
for(i = 0; i < reduced_length; i++) {
|
|
if (reduced_encode_mode[i] != current_mode) {
|
|
// Change mode
|
|
if (current_mode == 'U') {
|
|
switch (reduced_encode_mode[i]) {
|
|
case 'L':
|
|
bin_append(28, 5, binary_string); // L/L
|
|
break;
|
|
case 'M':
|
|
bin_append(29, 5, binary_string); // M/L
|
|
break;
|
|
case 'P':
|
|
bin_append(29, 5, binary_string); // M/L
|
|
bin_append(30, 5, binary_string); // P/L
|
|
break;
|
|
case 'p':
|
|
bin_append(0, 5, binary_string); // P/S
|
|
break;
|
|
case 'D':
|
|
bin_append(30, 5, binary_string); // D/L
|
|
break;
|
|
case 'B':
|
|
bin_append(31, 5, binary_string); // B/S
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'L') {
|
|
switch (reduced_encode_mode[i]) {
|
|
case 'U':
|
|
bin_append(30, 5, binary_string); // D/L
|
|
bin_append(14, 4, binary_string); // U/L
|
|
break;
|
|
case 'u':
|
|
bin_append(28, 5, binary_string); // U/S
|
|
break;
|
|
case 'M':
|
|
bin_append(29, 5, binary_string); // M/L
|
|
break;
|
|
case 'P':
|
|
bin_append(30, 5, binary_string); // P/L
|
|
break;
|
|
case 'p':
|
|
bin_append(0, 5, binary_string); // P/S
|
|
break;
|
|
case 'D':
|
|
bin_append(30, 5, binary_string); // D/L
|
|
break;
|
|
case 'B':
|
|
bin_append(31, 5, binary_string); // B/S
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'M') {
|
|
switch (reduced_encode_mode[i]) {
|
|
case 'U':
|
|
bin_append(29, 5, binary_string); // U/L
|
|
break;
|
|
case 'L':
|
|
bin_append(28, 5, binary_string); // L/L
|
|
break;
|
|
case 'P':
|
|
bin_append(30, 5, binary_string); // P/L
|
|
break;
|
|
case 'p':
|
|
bin_append(0, 5, binary_string); // P/S
|
|
break;
|
|
case 'D':
|
|
bin_append(29, 5, binary_string); // U/L
|
|
bin_append(30, 5, binary_string); // D/L
|
|
break;
|
|
case 'B':
|
|
bin_append(31, 5, binary_string); // B/S
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'P') {
|
|
switch (reduced_encode_mode[i]) {
|
|
case 'U':
|
|
bin_append(31, 5, binary_string); // U/L
|
|
break;
|
|
case 'L':
|
|
bin_append(31, 5, binary_string); // U/L
|
|
bin_append(28, 5, binary_string); // L/L
|
|
break;
|
|
case 'M':
|
|
bin_append(31, 5, binary_string); // U/L
|
|
bin_append(29, 5, binary_string); // M/L
|
|
break;
|
|
case 'D':
|
|
bin_append(31, 5, binary_string); // U/L
|
|
bin_append(30, 5, binary_string); // D/L
|
|
break;
|
|
case 'B':
|
|
bin_append(31, 5, binary_string); // U/L
|
|
current_mode = 'U';
|
|
bin_append(31, 5, binary_string); // B/S
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (current_mode == 'D') {
|
|
switch (reduced_encode_mode[i]) {
|
|
case 'U':
|
|
bin_append(14, 4, binary_string); // U/L
|
|
break;
|
|
case 'u':
|
|
bin_append(15, 4, binary_string); // U/S
|
|
break;
|
|
case 'L':
|
|
bin_append(14, 4, binary_string); // U/L
|
|
bin_append(28, 5, binary_string); // L/L
|
|
break;
|
|
case 'M':
|
|
bin_append(14, 4, binary_string); // U/L
|
|
bin_append(29, 5, binary_string); // M/L
|
|
break;
|
|
case 'P':
|
|
bin_append(14, 4, binary_string); // U/L
|
|
bin_append(29, 5, binary_string); // M/L
|
|
bin_append(30, 5, binary_string); // P/L
|
|
break;
|
|
case 'p':
|
|
bin_append(0, 4, binary_string); // P/S
|
|
break;
|
|
case 'B':
|
|
bin_append(14, 4, binary_string); // U/L
|
|
current_mode = 'U';
|
|
bin_append(31, 5, binary_string); // B/S
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Byte mode length descriptor
|
|
if ((reduced_encode_mode[i] == 'B') && (!byte_mode)) {
|
|
for (count = 0; ((i + count) < reduced_length) && (reduced_encode_mode[i] == 'B'); count++);
|
|
|
|
if (count > 2079) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
if (count > 31) {
|
|
/* Put 00000 followed by 11-bit number of bytes less 31 */
|
|
bin_append(0, 5, binary_string);
|
|
bin_append(count - 31, 11, binary_string);
|
|
} else {
|
|
/* Put 5-bit number of bytes */
|
|
bin_append(count, 5, binary_string);
|
|
}
|
|
byte_mode = 1;
|
|
}
|
|
|
|
if ((reduced_encode_mode[i] != 'B') && byte_mode) {
|
|
byte_mode = 0;
|
|
}
|
|
|
|
if ((reduced_encode_mode[i] != 'B') && (reduced_encode_mode[i] != 'u') && (reduced_encode_mode[i] != 'p')) {
|
|
current_mode = reduced_encode_mode[i];
|
|
}
|
|
}
|
|
|
|
if ((reduced_encode_mode[i] == 'U') || (reduced_encode_mode[i] == 'u')) {
|
|
if (reduced_source[i] == ' ') {
|
|
bin_append(1, 5, binary_string); // SP
|
|
} else {
|
|
bin_append(AztecSymbolChar[(int) reduced_source[i]], 5, binary_string);
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] == 'L') {
|
|
if (reduced_source[i] == ' ') {
|
|
bin_append(1, 5, binary_string); // SP
|
|
} else {
|
|
bin_append(AztecSymbolChar[(int) reduced_source[i]], 5, binary_string);
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] == 'M') {
|
|
if (reduced_source[i] == ' ') {
|
|
bin_append(1, 5, binary_string); // SP
|
|
} else if (reduced_source[i] == 13) {
|
|
bin_append(14, 5, binary_string); // CR
|
|
} else {
|
|
bin_append(AztecSymbolChar[(int) reduced_source[i]], 5, binary_string);
|
|
}
|
|
}
|
|
|
|
if ((reduced_encode_mode[i] == 'P') || (reduced_encode_mode[i] == 'p')) {
|
|
if (gs1 && (reduced_source[i] == '[')) {
|
|
bin_append(0, 5, binary_string); // FLG(0) = FNC1
|
|
} else if (reduced_source[i] == 13) {
|
|
bin_append(1, 5, binary_string); // CR
|
|
} else if (reduced_source[i] == 'a') {
|
|
bin_append(2, 5, binary_string); // CR LF
|
|
} else if (reduced_source[i] == 'b') {
|
|
bin_append(3, 5, binary_string); // . SP
|
|
} else if (reduced_source[i] == 'c') {
|
|
bin_append(4, 5, binary_string); // , SP
|
|
} else if (reduced_source[i] == 'd') {
|
|
bin_append(5, 5, binary_string); // : SP
|
|
} else if (reduced_source[i] == ',') {
|
|
bin_append(17, 5, binary_string); // Comma
|
|
} else if (reduced_source[i] == '.') {
|
|
bin_append(19, 5, binary_string); // Full stop
|
|
} else {
|
|
bin_append(AztecSymbolChar[(int) reduced_source[i]], 5, binary_string);
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] == 'D') {
|
|
if (reduced_source[i] == ' ') {
|
|
bin_append(1, 4, binary_string); // SP
|
|
} else if (reduced_source[i] == ',') {
|
|
bin_append(12, 4, binary_string); // Comma
|
|
} else if (reduced_source[i] == '.') {
|
|
bin_append(13, 4, binary_string); // Full stop
|
|
} else {
|
|
bin_append(AztecSymbolChar[(int) reduced_source[i]], 4, binary_string);
|
|
}
|
|
}
|
|
|
|
if (reduced_encode_mode[i] == 'B') {
|
|
bin_append(reduced_source[i], 8, binary_string);
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("Binary String:\n");
|
|
printf("%s\n", binary_string);
|
|
}
|
|
|
|
free(encode_mode);
|
|
free(reduced_source);
|
|
free(reduced_encode_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prevent data from obscuring reference grid */
|
|
static int avoidReferenceGrid(int output) {
|
|
|
|
if (output > 10) {
|
|
output++;
|
|
}
|
|
if (output > 26) {
|
|
output++;
|
|
}
|
|
if (output > 42) {
|
|
output++;
|
|
}
|
|
if (output > 58) {
|
|
output++;
|
|
}
|
|
if (output > 74) {
|
|
output++;
|
|
}
|
|
if (output > 90) {
|
|
output++;
|
|
}
|
|
if (output > 106) {
|
|
output++;
|
|
}
|
|
if (output > 122) {
|
|
output++;
|
|
}
|
|
if (output > 138) {
|
|
output++;
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
/* Calculate the position of the bits in the grid */
|
|
static void populate_map() {
|
|
int layer, n, i;
|
|
int x, y;
|
|
|
|
for (x = 0; x < 151; x++) {
|
|
for (y = 0; y < 151; y++) {
|
|
AztecMap[(x * 151) + y] = 0;
|
|
}
|
|
}
|
|
|
|
for (layer = 1; layer < 33; layer++) {
|
|
const int start = (112 * (layer - 1)) + (16 * (layer - 1) * (layer - 1)) + 2;
|
|
const int length = 28 + ((layer - 1) * 4) + (layer * 4);
|
|
/* Top */
|
|
i = 0;
|
|
x = 64 - ((layer - 1) * 2);
|
|
y = 63 - ((layer - 1) * 2);
|
|
for (n = start; n < (start + length); n += 2) {
|
|
AztecMap[(avoidReferenceGrid(y) * 151) + avoidReferenceGrid(x + i)] = n;
|
|
AztecMap[(avoidReferenceGrid(y - 1) * 151) + avoidReferenceGrid(x + i)] = n + 1;
|
|
i++;
|
|
}
|
|
/* Right */
|
|
i = 0;
|
|
x = 78 + ((layer - 1) * 2);
|
|
y = 64 - ((layer - 1) * 2);
|
|
for (n = start + length; n < (start + (length * 2)); n += 2) {
|
|
AztecMap[(avoidReferenceGrid(y + i) * 151) + avoidReferenceGrid(x)] = n;
|
|
AztecMap[(avoidReferenceGrid(y + i) * 151) + avoidReferenceGrid(x + 1)] = n + 1;
|
|
i++;
|
|
}
|
|
/* Bottom */
|
|
i = 0;
|
|
x = 77 + ((layer - 1) * 2);
|
|
y = 78 + ((layer - 1) * 2);
|
|
for (n = start + (length * 2); n < (start + (length * 3)); n += 2) {
|
|
AztecMap[(avoidReferenceGrid(y) * 151) + avoidReferenceGrid(x - i)] = n;
|
|
AztecMap[(avoidReferenceGrid(y + 1) * 151) + avoidReferenceGrid(x - i)] = n + 1;
|
|
i++;
|
|
}
|
|
/* Left */
|
|
i = 0;
|
|
x = 63 - ((layer - 1) * 2);
|
|
y = 77 + ((layer - 1) * 2);
|
|
for (n = start + (length * 3); n < (start + (length * 4)); n += 2) {
|
|
AztecMap[(avoidReferenceGrid(y - i) * 151) + avoidReferenceGrid(x)] = n;
|
|
AztecMap[(avoidReferenceGrid(y - i) * 151) + avoidReferenceGrid(x - 1)] = n + 1;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Central finder pattern */
|
|
for (y = 69; y <= 81; y++) {
|
|
for (x = 69; x <= 81; x++) {
|
|
AztecMap[(x * 151) + y] = 1;
|
|
}
|
|
}
|
|
for (y = 70; y <= 80; y++) {
|
|
for (x = 70; x <= 80; x++) {
|
|
AztecMap[(x * 151) + y] = 0;
|
|
}
|
|
}
|
|
for (y = 71; y <= 79; y++) {
|
|
for (x = 71; x <= 79; x++) {
|
|
AztecMap[(x * 151) + y] = 1;
|
|
}
|
|
}
|
|
for (y = 72; y <= 78; y++) {
|
|
for (x = 72; x <= 78; x++) {
|
|
AztecMap[(x * 151) + y] = 0;
|
|
}
|
|
}
|
|
for (y = 73; y <= 77; y++) {
|
|
for (x = 73; x <= 77; x++) {
|
|
AztecMap[(x * 151) + y] = 1;
|
|
}
|
|
}
|
|
for (y = 74; y <= 76; y++) {
|
|
for (x = 74; x <= 76; x++) {
|
|
AztecMap[(x * 151) + y] = 0;
|
|
}
|
|
}
|
|
|
|
/* Guide bars */
|
|
for (y = 11; y < 151; y += 16) {
|
|
for (x = 1; x < 151; x += 2) {
|
|
AztecMap[(x * 151) + y] = 1;
|
|
AztecMap[(y * 151) + x] = 1;
|
|
}
|
|
}
|
|
|
|
/* Descriptor */
|
|
for (i = 0; i < 10; i++) {
|
|
/* Top */
|
|
AztecMap[(avoidReferenceGrid(64) * 151) + avoidReferenceGrid(66 + i)] = 20000 + i;
|
|
}
|
|
for (i = 0; i < 10; i++) {
|
|
/* Right */
|
|
AztecMap[(avoidReferenceGrid(66 + i) * 151) + avoidReferenceGrid(77)] = 20010 + i;
|
|
}
|
|
for (i = 0; i < 10; i++) {
|
|
/* Bottom */
|
|
AztecMap[(avoidReferenceGrid(77) * 151) + avoidReferenceGrid(75 - i)] = 20020 + i;
|
|
}
|
|
for (i = 0; i < 10; i++) {
|
|
/* Left */
|
|
AztecMap[(avoidReferenceGrid(75 - i) * 151) + avoidReferenceGrid(64)] = 20030 + i;
|
|
}
|
|
|
|
/* Orientation */
|
|
AztecMap[(avoidReferenceGrid(64) * 151) + avoidReferenceGrid(64)] = 1;
|
|
AztecMap[(avoidReferenceGrid(65) * 151) + avoidReferenceGrid(64)] = 1;
|
|
AztecMap[(avoidReferenceGrid(64) * 151) + avoidReferenceGrid(65)] = 1;
|
|
AztecMap[(avoidReferenceGrid(64) * 151) + avoidReferenceGrid(77)] = 1;
|
|
AztecMap[(avoidReferenceGrid(65) * 151) + avoidReferenceGrid(77)] = 1;
|
|
AztecMap[(avoidReferenceGrid(76) * 151) + avoidReferenceGrid(77)] = 1;
|
|
}
|
|
|
|
int aztec(struct zint_symbol *symbol, unsigned char source[], const size_t length) {
|
|
int x, y, i, j, p, data_blocks, ecc_blocks, layers, total_bits;
|
|
char binary_string[20000], bit_pattern[20045], descriptor[42];
|
|
char adjusted_string[20000];
|
|
unsigned char desc_data[4], desc_ecc[6];
|
|
int err_code, ecc_level, compact, data_length, data_maxsize, codeword_size, adjusted_length;
|
|
int remainder, padbits, count, gs1, adjustment_size;
|
|
int debug = symbol->debug, reader = 0;
|
|
int comp_loop = 4;
|
|
|
|
#ifdef _MSC_VER
|
|
unsigned int* data_part;
|
|
unsigned int* ecc_part;
|
|
#endif
|
|
|
|
memset(binary_string, 0, 20000);
|
|
memset(adjusted_string, 0, 20000);
|
|
|
|
if (symbol->input_mode == GS1_MODE) {
|
|
gs1 = 1;
|
|
} else {
|
|
gs1 = 0;
|
|
}
|
|
if (symbol->output_options & READER_INIT) {
|
|
reader = 1;
|
|
comp_loop = 1;
|
|
}
|
|
if (gs1 && reader) {
|
|
strcpy(symbol->errtxt, "501: Cannot encode in GS1 and Reader Initialisation mode at the same time");
|
|
return ZINT_ERROR_INVALID_OPTION;
|
|
}
|
|
|
|
populate_map();
|
|
|
|
err_code = aztec_text_process(source, length, binary_string, gs1, symbol->eci, symbol->debug);
|
|
|
|
if (err_code != 0) {
|
|
strcpy(symbol->errtxt, "502: Input too long or too many extended ASCII characters");
|
|
return err_code;
|
|
}
|
|
|
|
if (!((symbol->option_1 >= -1) && (symbol->option_1 <= 4))) {
|
|
strcpy(symbol->errtxt, "503: Invalid error correction level - using default instead");
|
|
err_code = ZINT_WARN_INVALID_OPTION;
|
|
symbol->option_1 = -1;
|
|
}
|
|
|
|
ecc_level = symbol->option_1;
|
|
|
|
if ((ecc_level == -1) || (ecc_level == 0)) {
|
|
ecc_level = 2;
|
|
}
|
|
|
|
data_length = (int) strlen(binary_string);
|
|
|
|
layers = 0; /* Keep compiler happy! */
|
|
data_maxsize = 0; /* Keep compiler happy! */
|
|
adjustment_size = 0;
|
|
if (symbol->option_2 == 0) { /* The size of the symbol can be determined by Zint */
|
|
do {
|
|
/* Decide what size symbol to use - the smallest that fits the data */
|
|
compact = 0; /* 1 = Aztec Compact, 0 = Normal Aztec */
|
|
layers = 0;
|
|
|
|
switch (ecc_level) {
|
|
/* For each level of error correction work out the smallest symbol which
|
|
the data will fit in */
|
|
case 1: for (i = 32; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < Aztec10DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 0;
|
|
data_maxsize = Aztec10DataSizes[i - 1];
|
|
}
|
|
}
|
|
for (i = comp_loop; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < AztecCompact10DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 1;
|
|
data_maxsize = AztecCompact10DataSizes[i - 1];
|
|
}
|
|
}
|
|
break;
|
|
case 2: for (i = 32; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < Aztec23DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 0;
|
|
data_maxsize = Aztec23DataSizes[i - 1];
|
|
}
|
|
}
|
|
for (i = comp_loop; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < AztecCompact23DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 1;
|
|
data_maxsize = AztecCompact23DataSizes[i - 1];
|
|
}
|
|
}
|
|
break;
|
|
case 3: for (i = 32; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < Aztec36DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 0;
|
|
data_maxsize = Aztec36DataSizes[i - 1];
|
|
}
|
|
}
|
|
for (i = comp_loop; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < AztecCompact36DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 1;
|
|
data_maxsize = AztecCompact36DataSizes[i - 1];
|
|
}
|
|
}
|
|
break;
|
|
case 4: for (i = 32; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < Aztec50DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 0;
|
|
data_maxsize = Aztec50DataSizes[i - 1];
|
|
}
|
|
}
|
|
for (i = comp_loop; i > 0; i--) {
|
|
if ((data_length + adjustment_size) < AztecCompact50DataSizes[i - 1]) {
|
|
layers = i;
|
|
compact = 1;
|
|
data_maxsize = AztecCompact50DataSizes[i - 1];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (layers == 0) { /* Couldn't find a symbol which fits the data */
|
|
strcpy(symbol->errtxt, "504: Input too long (too many bits for selected ECC)");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
/* Determine codeword bitlength - Table 3 */
|
|
codeword_size = 6; /* if (layers <= 2) */
|
|
if ((layers >= 3) && (layers <= 8)) {
|
|
codeword_size = 8;
|
|
}
|
|
if ((layers >= 9) && (layers <= 22)) {
|
|
codeword_size = 10;
|
|
}
|
|
if (layers >= 23) {
|
|
codeword_size = 12;
|
|
}
|
|
|
|
j = 0;
|
|
i = 0;
|
|
do {
|
|
if ((j + 1) % codeword_size == 0) {
|
|
/* Last bit of codeword */
|
|
int t, done = 0;
|
|
count = 0;
|
|
|
|
/* Discover how many '1's in current codeword */
|
|
for (t = 0; t < (codeword_size - 1); t++) {
|
|
if (binary_string[(i - (codeword_size - 1)) + t] == '1') count++;
|
|
}
|
|
|
|
if (count == (codeword_size - 1)) {
|
|
adjusted_string[j] = '0';
|
|
j++;
|
|
done = 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
adjusted_string[j] = '1';
|
|
j++;
|
|
done = 1;
|
|
}
|
|
|
|
if (done == 0) {
|
|
adjusted_string[j] = binary_string[i];
|
|
j++;
|
|
i++;
|
|
}
|
|
}
|
|
adjusted_string[j] = binary_string[i];
|
|
j++;
|
|
i++;
|
|
} while (i <= (data_length + 1));
|
|
adjusted_string[j] = '\0';
|
|
adjusted_length = (int) strlen(adjusted_string);
|
|
adjustment_size = adjusted_length - data_length;
|
|
|
|
/* Add padding */
|
|
remainder = adjusted_length % codeword_size;
|
|
|
|
padbits = codeword_size - remainder;
|
|
if (padbits == codeword_size) {
|
|
padbits = 0;
|
|
}
|
|
|
|
for (i = 0; i < padbits; i++) {
|
|
strcat(adjusted_string, "1");
|
|
}
|
|
adjusted_length = (int) strlen(adjusted_string);
|
|
|
|
count = 0;
|
|
for (i = (adjusted_length - codeword_size); i < adjusted_length; i++) {
|
|
if (adjusted_string[i] == '1') {
|
|
count++;
|
|
}
|
|
}
|
|
if (count == codeword_size) {
|
|
adjusted_string[adjusted_length - 1] = '0';
|
|
}
|
|
|
|
if (debug) {
|
|
printf("Codewords:\n");
|
|
for (i = 0; i < (adjusted_length / codeword_size); i++) {
|
|
for (j = 0; j < codeword_size; j++) {
|
|
printf("%c", adjusted_string[(i * codeword_size) + j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
} while (adjusted_length > data_maxsize);
|
|
/* This loop will only repeat on the rare occasions when the rule about not having all 1s or all 0s
|
|
means that the binary string has had to be lengthened beyond the maximum number of bits that can
|
|
be encoded in a symbol of the selected size */
|
|
|
|
} else { /* The size of the symbol has been specified by the user */
|
|
if ((reader == 1) && ((symbol->option_2 >= 2) && (symbol->option_2 <= 4))) {
|
|
symbol->option_2 = 5;
|
|
}
|
|
if ((symbol->option_2 >= 1) && (symbol->option_2 <= 4)) {
|
|
compact = 1;
|
|
layers = symbol->option_2;
|
|
}
|
|
if ((symbol->option_2 >= 5) && (symbol->option_2 <= 36)) {
|
|
compact = 0;
|
|
layers = symbol->option_2 - 4;
|
|
}
|
|
if ((symbol->option_2 < 0) || (symbol->option_2 > 36)) {
|
|
strcpy(symbol->errtxt, "510: Invalid Aztec Code size");
|
|
return ZINT_ERROR_INVALID_OPTION;
|
|
}
|
|
|
|
/* Determine codeword bitlength - Table 3 */
|
|
if ((layers >= 0) && (layers <= 2)) {
|
|
codeword_size = 6;
|
|
}
|
|
if ((layers >= 3) && (layers <= 8)) {
|
|
codeword_size = 8;
|
|
}
|
|
if ((layers >= 9) && (layers <= 22)) {
|
|
codeword_size = 10;
|
|
}
|
|
if (layers >= 23) {
|
|
codeword_size = 12;
|
|
}
|
|
|
|
j = 0;
|
|
i = 0;
|
|
do {
|
|
if ((j + 1) % codeword_size == 0) {
|
|
/* Last bit of codeword */
|
|
int t, done = 0;
|
|
count = 0;
|
|
|
|
/* Discover how many '1's in current codeword */
|
|
for (t = 0; t < (codeword_size - 1); t++) {
|
|
if (binary_string[(i - (codeword_size - 1)) + t] == '1') count++;
|
|
}
|
|
|
|
if (count == (codeword_size - 1)) {
|
|
adjusted_string[j] = '0';
|
|
j++;
|
|
done = 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
adjusted_string[j] = '1';
|
|
j++;
|
|
done = 1;
|
|
}
|
|
|
|
if (done == 0) {
|
|
adjusted_string[j] = binary_string[i];
|
|
j++;
|
|
i++;
|
|
}
|
|
}
|
|
adjusted_string[j] = binary_string[i];
|
|
j++;
|
|
i++;
|
|
} while (i <= (data_length + 1));
|
|
adjusted_string[j] = '\0';
|
|
adjusted_length = (int) strlen(adjusted_string);
|
|
|
|
remainder = adjusted_length % codeword_size;
|
|
|
|
padbits = codeword_size - remainder;
|
|
if (padbits == codeword_size) {
|
|
padbits = 0;
|
|
}
|
|
|
|
for (i = 0; i < padbits; i++) {
|
|
strcat(adjusted_string, "1");
|
|
}
|
|
adjusted_length = (int) strlen(adjusted_string);
|
|
|
|
count = 0;
|
|
for (i = (adjusted_length - codeword_size); i < adjusted_length; i++) {
|
|
if (adjusted_string[i] == '1') {
|
|
count++;
|
|
}
|
|
}
|
|
if (count == codeword_size) {
|
|
adjusted_string[adjusted_length - 1] = '0';
|
|
}
|
|
|
|
/* Check if the data actually fits into the selected symbol size */
|
|
if (compact) {
|
|
data_maxsize = codeword_size * (AztecCompactSizes[layers - 1] - 3);
|
|
} else {
|
|
data_maxsize = codeword_size * (AztecSizes[layers - 1] - 3);
|
|
}
|
|
|
|
if (adjusted_length > data_maxsize) {
|
|
strcpy(symbol->errtxt, "505: Data too long for specified Aztec Code symbol size");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
if (debug) {
|
|
printf("Codewords:\n");
|
|
for (i = 0; i < (adjusted_length / codeword_size); i++) {
|
|
for (j = 0; j < codeword_size; j++) {
|
|
printf("%c", adjusted_string[(i * codeword_size) + j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (reader && (layers > 22)) {
|
|
strcpy(symbol->errtxt, "506: Data too long for reader initialisation symbol");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
data_blocks = adjusted_length / codeword_size;
|
|
|
|
if (compact) {
|
|
ecc_blocks = AztecCompactSizes[layers - 1] - data_blocks;
|
|
} else {
|
|
ecc_blocks = AztecSizes[layers - 1] - data_blocks;
|
|
}
|
|
|
|
if (debug) {
|
|
printf("Generating a ");
|
|
if (compact) {
|
|
printf("compact");
|
|
} else {
|
|
printf("full-size");
|
|
}
|
|
printf(" symbol with %d layers\n", layers);
|
|
printf("Requires ");
|
|
if (compact) {
|
|
printf("%d", AztecCompactSizes[layers - 1]);
|
|
} else {
|
|
printf("%d", AztecSizes[layers - 1]);
|
|
}
|
|
printf(" codewords of %d-bits\n", codeword_size);
|
|
printf(" (%d data words, %d ecc words)\n", data_blocks, ecc_blocks);
|
|
}
|
|
|
|
#ifndef _MSC_VER
|
|
unsigned int data_part[data_blocks + 3], ecc_part[ecc_blocks + 3];
|
|
#else
|
|
data_part = (unsigned int*) _alloca((data_blocks + 3) * sizeof (unsigned int));
|
|
ecc_part = (unsigned int*) _alloca((ecc_blocks + 3) * sizeof (unsigned int));
|
|
#endif
|
|
/* Copy across data into separate integers */
|
|
memset(data_part, 0, (data_blocks + 2) * sizeof (int));
|
|
memset(ecc_part, 0, (ecc_blocks + 2) * sizeof (int));
|
|
|
|
/* Split into codewords and calculate reed-solomon error correction codes */
|
|
for (i = 0; i < data_blocks; i++) {
|
|
for (p = 0; p < codeword_size; p++) {
|
|
if (adjusted_string[i * codeword_size + p] == '1') {
|
|
data_part[i] += 0x01 << (codeword_size - (p + 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (codeword_size) {
|
|
case 6:
|
|
rs_init_gf(0x43);
|
|
break;
|
|
case 8:
|
|
rs_init_gf(0x12d);
|
|
break;
|
|
case 10:
|
|
rs_init_gf(0x409);
|
|
break;
|
|
case 12:
|
|
rs_init_gf(0x1069);
|
|
break;
|
|
}
|
|
|
|
rs_init_code(ecc_blocks, 1);
|
|
rs_encode_long(data_blocks, data_part, ecc_part);
|
|
for (i = (ecc_blocks - 1); i >= 0; i--) {
|
|
bin_append(ecc_part[i], codeword_size, adjusted_string);
|
|
}
|
|
rs_free();
|
|
|
|
/* Invert the data so that actual data is on the outside and reed-solomon on the inside */
|
|
memset(bit_pattern, '0', 20045);
|
|
|
|
total_bits = (data_blocks + ecc_blocks) * codeword_size;
|
|
for (i = 0; i < total_bits; i++) {
|
|
bit_pattern[i] = adjusted_string[total_bits - i - 1];
|
|
}
|
|
|
|
/* Now add the symbol descriptor */
|
|
memset(desc_data, 0, 4);
|
|
memset(desc_ecc, 0, 6);
|
|
memset(descriptor, 0, 42);
|
|
|
|
if (compact) {
|
|
/* The first 2 bits represent the number of layers minus 1 */
|
|
if ((layers - 1) & 0x02) {
|
|
descriptor[0] = '1';
|
|
} else {
|
|
descriptor[0] = '0';
|
|
}
|
|
if ((layers - 1) & 0x01) {
|
|
descriptor[1] = '1';
|
|
} else {
|
|
descriptor[1] = '0';
|
|
}
|
|
/* The next 6 bits represent the number of data blocks minus 1 */
|
|
if (reader) {
|
|
descriptor[2] = '1';
|
|
} else {
|
|
if ((data_blocks - 1) & 0x20) {
|
|
descriptor[2] = '1';
|
|
} else {
|
|
descriptor[2] = '0';
|
|
}
|
|
}
|
|
|
|
for (i = 3; i < 8; i++) {
|
|
if ((data_blocks - 1) & (0x10 >> (i - 3))) {
|
|
descriptor[i] = '1';
|
|
} else {
|
|
descriptor[i] = '0';
|
|
}
|
|
}
|
|
|
|
descriptor[8] = '\0';
|
|
if (debug) printf("Mode Message = %s\n", descriptor);
|
|
} else {
|
|
/* The first 5 bits represent the number of layers minus 1 */
|
|
for (i = 0; i < 5; i++) {
|
|
if ((layers - 1) & (0x10 >> i)) {
|
|
descriptor[i] = '1';
|
|
} else {
|
|
descriptor[i] = '0';
|
|
}
|
|
}
|
|
|
|
/* The next 11 bits represent the number of data blocks minus 1 */
|
|
if (reader) {
|
|
descriptor[5] = '1';
|
|
} else {
|
|
if ((data_blocks - 1) & 0x400) {
|
|
descriptor[5] = '1';
|
|
} else {
|
|
descriptor[5] = '0';
|
|
}
|
|
}
|
|
for (i = 6; i < 16; i++) {
|
|
if ((data_blocks - 1) & (0x200 >> (i - 6))) {
|
|
descriptor[i] = '1';
|
|
} else {
|
|
descriptor[i] = '0';
|
|
}
|
|
}
|
|
descriptor[16] = '\0';
|
|
if (debug) printf("Mode Message = %s\n", descriptor);
|
|
}
|
|
|
|
/* Split into 4-bit codewords */
|
|
for (i = 0; i < 4; i++) {
|
|
if (descriptor[i * 4] == '1') {
|
|
desc_data[i] += 8;
|
|
}
|
|
if (descriptor[(i * 4) + 1] == '1') {
|
|
desc_data[i] += 4;
|
|
}
|
|
if (descriptor[(i * 4) + 2] == '1') {
|
|
desc_data[i] += 2;
|
|
}
|
|
if (descriptor[(i * 4) + 3] == '1') {
|
|
desc_data[i] += 1;
|
|
}
|
|
}
|
|
|
|
/* Add reed-solomon error correction with Galois field GF(16) and prime modulus
|
|
x^4 + x + 1 (section 7.2.3)*/
|
|
|
|
rs_init_gf(0x13);
|
|
if (compact) {
|
|
rs_init_code(5, 1);
|
|
rs_encode(2, desc_data, desc_ecc);
|
|
for (i = 0; i < 5; i++) {
|
|
if (desc_ecc[4 - i] & 0x08) {
|
|
descriptor[(i * 4) + 8] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 8] = '0';
|
|
}
|
|
if (desc_ecc[4 - i] & 0x04) {
|
|
descriptor[(i * 4) + 9] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 9] = '0';
|
|
}
|
|
if (desc_ecc[4 - i] & 0x02) {
|
|
descriptor[(i * 4) + 10] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 10] = '0';
|
|
}
|
|
if (desc_ecc[4 - i] & 0x01) {
|
|
descriptor[(i * 4) + 11] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 11] = '0';
|
|
}
|
|
}
|
|
} else {
|
|
rs_init_code(6, 1);
|
|
rs_encode(4, desc_data, desc_ecc);
|
|
for (i = 0; i < 6; i++) {
|
|
if (desc_ecc[5 - i] & 0x08) {
|
|
descriptor[(i * 4) + 16] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 16] = '0';
|
|
}
|
|
if (desc_ecc[5 - i] & 0x04) {
|
|
descriptor[(i * 4) + 17] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 17] = '0';
|
|
}
|
|
if (desc_ecc[5 - i] & 0x02) {
|
|
descriptor[(i * 4) + 18] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 18] = '0';
|
|
}
|
|
if (desc_ecc[5 - i] & 0x01) {
|
|
descriptor[(i * 4) + 19] = '1';
|
|
} else {
|
|
descriptor[(i * 4) + 19] = '0';
|
|
}
|
|
}
|
|
}
|
|
rs_free();
|
|
|
|
/* Merge descriptor with the rest of the symbol */
|
|
for (i = 0; i < 40; i++) {
|
|
if (compact) {
|
|
bit_pattern[2000 + i - 2] = descriptor[i];
|
|
} else {
|
|
bit_pattern[20000 + i - 2] = descriptor[i];
|
|
}
|
|
}
|
|
|
|
/* Plot all of the data into the symbol in pre-defined spiral pattern */
|
|
if (compact) {
|
|
|
|
for (y = AztecCompactOffset[layers - 1]; y < (27 - AztecCompactOffset[layers - 1]); y++) {
|
|
for (x = AztecCompactOffset[layers - 1]; x < (27 - AztecCompactOffset[layers - 1]); x++) {
|
|
if (CompactAztecMap[(y * 27) + x] == 1) {
|
|
set_module(symbol, y - AztecCompactOffset[layers - 1], x - AztecCompactOffset[layers - 1]);
|
|
}
|
|
if (CompactAztecMap[(y * 27) + x] >= 2) {
|
|
if (bit_pattern[CompactAztecMap[(y * 27) + x] - 2] == '1') {
|
|
set_module(symbol, y - AztecCompactOffset[layers - 1], x - AztecCompactOffset[layers - 1]);
|
|
}
|
|
}
|
|
}
|
|
symbol->row_height[y - AztecCompactOffset[layers - 1]] = 1;
|
|
}
|
|
symbol->rows = 27 - (2 * AztecCompactOffset[layers - 1]);
|
|
symbol->width = 27 - (2 * AztecCompactOffset[layers - 1]);
|
|
} else {
|
|
|
|
for (y = AztecOffset[layers - 1]; y < (151 - AztecOffset[layers - 1]); y++) {
|
|
for (x = AztecOffset[layers - 1]; x < (151 - AztecOffset[layers - 1]); x++) {
|
|
if (AztecMap[(y * 151) + x] == 1) {
|
|
set_module(symbol, y - AztecOffset[layers - 1], x - AztecOffset[layers - 1]);
|
|
}
|
|
if (AztecMap[(y * 151) + x] >= 2) {
|
|
if (bit_pattern[AztecMap[(y * 151) + x] - 2] == '1') {
|
|
set_module(symbol, y - AztecOffset[layers - 1], x - AztecOffset[layers - 1]);
|
|
}
|
|
}
|
|
}
|
|
symbol->row_height[y - AztecOffset[layers - 1]] = 1;
|
|
}
|
|
symbol->rows = 151 - (2 * AztecOffset[layers - 1]);
|
|
symbol->width = 151 - (2 * AztecOffset[layers - 1]);
|
|
}
|
|
|
|
return err_code;
|
|
}
|
|
|
|
/* Encodes Aztec runes as specified in ISO/IEC 24778:2008 Annex A */
|
|
int aztec_runes(struct zint_symbol *symbol, unsigned char source[], int length) {
|
|
int input_value, error_number, i, y, x;
|
|
char binary_string[28];
|
|
unsigned char data_codewords[3], ecc_codewords[6];
|
|
|
|
error_number = 0;
|
|
input_value = 0;
|
|
if (length > 3) {
|
|
strcpy(symbol->errtxt, "507: Input too large");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
error_number = is_sane(NEON, source, length);
|
|
if (error_number != 0) {
|
|
strcpy(symbol->errtxt, "508: Invalid characters in input");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
switch (length) {
|
|
case 3: input_value = 100 * ctoi(source[0]);
|
|
input_value += 10 * ctoi(source[1]);
|
|
input_value += ctoi(source[2]);
|
|
break;
|
|
case 2: input_value = 10 * ctoi(source[0]);
|
|
input_value += ctoi(source[1]);
|
|
break;
|
|
case 1: input_value = ctoi(source[0]);
|
|
break;
|
|
}
|
|
|
|
if (input_value > 255) {
|
|
strcpy(symbol->errtxt, "509: Input too large");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
strcpy(binary_string, "");
|
|
bin_append(input_value, 8, binary_string);
|
|
|
|
data_codewords[0] = 0;
|
|
data_codewords[1] = 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (binary_string[i * 4] == '1') {
|
|
data_codewords[i] += 8;
|
|
}
|
|
if (binary_string[(i * 4) + 1] == '1') {
|
|
data_codewords[i] += 4;
|
|
}
|
|
if (binary_string[(i * 4) + 2] == '1') {
|
|
data_codewords[i] += 2;
|
|
}
|
|
if (binary_string[(i * 4) + 3] == '1') {
|
|
data_codewords[i] += 1;
|
|
}
|
|
}
|
|
|
|
rs_init_gf(0x13);
|
|
rs_init_code(5, 1);
|
|
rs_encode(2, data_codewords, ecc_codewords);
|
|
rs_free();
|
|
|
|
strcpy(binary_string, "");
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
if (ecc_codewords[4 - i] & 0x08) {
|
|
binary_string[(i * 4) + 8] = '1';
|
|
} else {
|
|
binary_string[(i * 4) + 8] = '0';
|
|
}
|
|
if (ecc_codewords[4 - i] & 0x04) {
|
|
binary_string[(i * 4) + 9] = '1';
|
|
} else {
|
|
binary_string[(i * 4) + 9] = '0';
|
|
}
|
|
if (ecc_codewords[4 - i] & 0x02) {
|
|
binary_string[(i * 4) + 10] = '1';
|
|
} else {
|
|
binary_string[(i * 4) + 10] = '0';
|
|
}
|
|
if (ecc_codewords[4 - i] & 0x01) {
|
|
binary_string[(i * 4) + 11] = '1';
|
|
} else {
|
|
binary_string[(i * 4) + 11] = '0';
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 28; i += 2) {
|
|
if (binary_string[i] == '1') {
|
|
binary_string[i] = '0';
|
|
} else {
|
|
binary_string[i] = '1';
|
|
}
|
|
}
|
|
|
|
for (y = 8; y < 19; y++) {
|
|
for (x = 8; x < 19; x++) {
|
|
if (CompactAztecMap[(y * 27) + x] == 1) {
|
|
set_module(symbol, y - 8, x - 8);
|
|
}
|
|
if (CompactAztecMap[(y * 27) + x] >= 2) {
|
|
if (binary_string[CompactAztecMap[(y * 27) + x] - 2000] == '1') {
|
|
set_module(symbol, y - 8, x - 8);
|
|
}
|
|
}
|
|
}
|
|
symbol->row_height[y - 8] = 1;
|
|
}
|
|
symbol->rows = 11;
|
|
symbol->width = 11;
|
|
|
|
return 0;
|
|
}
|