zint/backend/dmatrix.c
Robin Stuart 8afa0a24c6 Bugfix for 144x144 size Data Matrix
Conform with non-standard convention which now allows proper decoding of 144x144 size symbols.
Thanks to Terry Burton from Barcode Writer in Pure Postscript for the tip-off.
Ref: http://groups.google.com/group/postscriptbarcode/msg/5ae8fda7757477da
2010-10-24 16:19:29 +01:00

913 lines
25 KiB
C

/* dmatrix.c Handles Data Matrix ECC 200 symbols */
/*
libzint - the open source barcode library
Copyright (C) 2009 Robin Stuart <robin@zint.org.uk>
developed from and including some functions from:
IEC16022 bar code generation
Adrian Kennard, Andrews & Arnold Ltd
with help from Cliff Hones on the RS coding
(c) 2004 Adrian Kennard, Andrews & Arnold Ltd
(c) 2006 Stefan Schmidt <stefan@datenfreihafen.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include "reedsol.h"
#include "common.h"
#include "dmatrix.h"
// Annex M placement alorithm low level
static void ecc200placementbit(int *array, int NR, int NC, int r, int c, int p, char b)
{
if (r < 0) {
r += NR;
c += 4 - ((NR + 4) % 8);
}
if (c < 0) {
c += NC;
r += 4 - ((NC + 4) % 8);
}
array[r * NC + c] = (p << 3) + b;
}
static void ecc200placementblock(int *array, int NR, int NC, int r,
int c, int p)
{
ecc200placementbit(array, NR, NC, r - 2, c - 2, p, 7);
ecc200placementbit(array, NR, NC, r - 2, c - 1, p, 6);
ecc200placementbit(array, NR, NC, r - 1, c - 2, p, 5);
ecc200placementbit(array, NR, NC, r - 1, c - 1, p, 4);
ecc200placementbit(array, NR, NC, r - 1, c - 0, p, 3);
ecc200placementbit(array, NR, NC, r - 0, c - 2, p, 2);
ecc200placementbit(array, NR, NC, r - 0, c - 1, p, 1);
ecc200placementbit(array, NR, NC, r - 0, c - 0, p, 0);
}
static void ecc200placementcornerA(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 1, 1, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 2, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 2);
ecc200placementbit(array, NR, NC, 2, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 3, NC - 1, p, 0);
}
static void ecc200placementcornerB(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 3, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 2, 0, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 4, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 3, p, 3);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 2);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 0);
}
static void ecc200placementcornerC(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 3, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 2, 0, p, 6);
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 2);
ecc200placementbit(array, NR, NC, 2, NC - 1, p, 1);
ecc200placementbit(array, NR, NC, 3, NC - 1, p, 0);
}
static void ecc200placementcornerD(int *array, int NR, int NC, int p)
{
ecc200placementbit(array, NR, NC, NR - 1, 0, p, 7);
ecc200placementbit(array, NR, NC, NR - 1, NC - 1, p, 6);
ecc200placementbit(array, NR, NC, 0, NC - 3, p, 5);
ecc200placementbit(array, NR, NC, 0, NC - 2, p, 4);
ecc200placementbit(array, NR, NC, 0, NC - 1, p, 3);
ecc200placementbit(array, NR, NC, 1, NC - 3, p, 2);
ecc200placementbit(array, NR, NC, 1, NC - 2, p, 1);
ecc200placementbit(array, NR, NC, 1, NC - 1, p, 0);
}
// Annex M placement alorithm main function
static void ecc200placement(int *array, int NR, int NC)
{
int r, c, p;
// invalidate
for (r = 0; r < NR; r++)
for (c = 0; c < NC; c++)
array[r * NC + c] = 0;
// start
p = 1;
r = 4;
c = 0;
do {
// check corner
if (r == NR && !c)
ecc200placementcornerA(array, NR, NC, p++);
if (r == NR - 2 && !c && NC % 4)
ecc200placementcornerB(array, NR, NC, p++);
if (r == NR - 2 && !c && (NC % 8) == 4)
ecc200placementcornerC(array, NR, NC, p++);
if (r == NR + 4 && c == 2 && !(NC % 8))
ecc200placementcornerD(array, NR, NC, p++);
// up/right
do {
if (r < NR && c >= 0 && !array[r * NC + c])
ecc200placementblock(array, NR, NC, r, c, p++);
r -= 2;
c += 2;
}
while (r >= 0 && c < NC);
r++;
c += 3;
// down/left
do {
if (r >= 0 && c < NC && !array[r * NC + c])
ecc200placementblock(array, NR, NC, r, c, p++);
r += 2;
c -= 2;
}
while (r < NR && c >= 0);
r += 3;
c++;
}
while (r < NR || c < NC);
// unfilled corner
if (!array[NR * NC - 1])
array[NR * NC - 1] = array[NR * NC - NC - 2] = 1;
}
// calculate and append ecc code, and if necessary interleave
static void ecc200(unsigned char *binary, int bytes, int datablock, int rsblock, int skew)
{
int blocks = (bytes + 2) / datablock, b;
int n, p;
rs_init_gf(0x12d);
rs_init_code(rsblock, 1);
for (b = 0; b < blocks; b++) {
unsigned char buf[256], ecc[256];
p = 0;
for (n = b; n < bytes; n += blocks)
buf[p++] = binary[n];
rs_encode(p, buf, ecc);
p = rsblock - 1; // comes back reversed
for (n = b; n < rsblock * blocks; n += blocks) {
if (skew) {
/* Rotate ecc data to make 144x144 size symbols acceptable */
/* See http://groups.google.com/group/postscriptbarcode/msg/5ae8fda7757477da */
if(b < 8) {
binary[bytes + n + 2] = ecc[p--];
} else {
binary[bytes + n - 8] = ecc[p--];
}
} else {
binary[bytes + n] = ecc[p--];
}
}
}
rs_free();
}
int isx12(unsigned char source)
{
if(source == 13) { return 1; }
if(source == 42) { return 1; }
if(source == 62) { return 1; }
if(source == 32) { return 1; }
if((source >= '0') && (source <= '9')) { return 1; }
if((source >= 'A') && (source <= 'Z')) { return 1; }
return 0;
}
void dminsert(char binary_string[], int posn, char newbit)
{ /* Insert a character into the middle of a string at position posn */
int i, end;
end = strlen(binary_string);
for(i = end; i > posn; i--) {
binary_string[i] = binary_string[i - 1];
}
binary_string[posn] = newbit;
}
void insert_value(unsigned char binary_stream[], int posn, int streamlen, char newbit)
{
int i;
for(i = streamlen; i > posn; i--) {
binary_stream[i] = binary_stream[i - 1];
}
binary_stream[posn] = newbit;
}
int look_ahead_test(unsigned char source[], int sourcelen, int position, int current_mode, int gs1)
{
/* A custom version of the 'look ahead test' from Annex P */
/* This version is deliberately very reluctant to end a data stream with EDIFACT encoding */
return DM_ASCII;
float ascii_count, c40_count, text_count, x12_count, edf_count, b256_count, best_count;
int sp, done, best_scheme;
char reduced_char;
/* step (j) */
if(current_mode == DM_ASCII) {
ascii_count = 0.0;
c40_count = 1.0;
text_count = 1.0;
x12_count = 1.0;
edf_count = 1.0;
b256_count = 1.25;
} else {
ascii_count = 1.0;
c40_count = 2.0;
text_count = 2.0;
x12_count = 2.0;
edf_count = 2.0;
b256_count = 2.25;
}
switch(current_mode) {
case DM_C40: c40_count = 0.0; break;
case DM_TEXT: text_count = 0.0; break;
case DM_X12: x12_count = 0.0; break;
case DM_EDIFACT: edf_count = 0.0; break;
case DM_BASE256: b256_count = 0.0; break;
}
for(sp = position; (sp < sourcelen) && (sp <= (position + 8)); sp++) {
if(source[sp] <= 127) { reduced_char = source[sp]; } else { reduced_char = source[sp] - 127; }
if((source[sp] >= '0') && (source[sp] <= '9')) { ascii_count += 0.5; } else { ascii_count += 1.0; }
if(source[sp] > 127) { ascii_count += 1.0; }
done = 0;
if(reduced_char == ' ') { c40_count += (2.0 / 3.0); done = 1; }
if((reduced_char >= '0') && (reduced_char <= '9')) { c40_count += (2.0 / 3.0); done = 1; }
if((reduced_char >= 'A') && (reduced_char <= 'Z')) { c40_count += (2.0 / 3.0); done = 1; }
if(source[sp] > 127) { c40_count += (4.0 / 3.0); }
if(done == 0) { c40_count += (4.0 / 3.0); }
done = 0;
if(reduced_char == ' ') { text_count += (2.0 / 3.0); done = 1; }
if((reduced_char >= '0') && (reduced_char <= '9')) { text_count += (2.0 / 3.0); done = 1; }
if((reduced_char >= 'a') && (reduced_char <= 'z')) { text_count += (2.0 / 3.0); done = 1; }
if(source[sp] > 127) { text_count += (4.0 / 3.0); }
if(done == 0) { text_count += (4.0 / 3.0); }
if(isx12(source[sp])) { x12_count += (2.0 / 3.0); } else { x12_count += 4.0; }
/* step (p) */
done = 0;
if((source[sp] >= ' ') && (source[sp] <= '^')) { edf_count += (3.0 / 4.0); } else { edf_count += 6.0; }
if(gs1 && (source[sp] == '[')) { edf_count += 6.0; }
if(sp >= (sourcelen - 5)) { edf_count += 6.0; } /* MMmmm fudge! */
/* step (q) */
if(gs1 && (source[sp] == '[')) { b256_count += 4.0; } else { b256_count += 1.0; }
/* printf("%c lat a%.2f c%.2f t%.2f x%.2f e%.2f b%.2f\n", source[sp], ascii_count, c40_count, text_count, x12_count, edf_count, b256_count); */
}
best_count = ascii_count;
best_scheme = DM_ASCII;
if(b256_count <= best_count) {
best_count = b256_count;
best_scheme = DM_BASE256;
}
if(edf_count <= best_count) {
best_count = edf_count;
best_scheme = DM_EDIFACT;
}
if(text_count <= best_count) {
best_count = text_count;
best_scheme = DM_TEXT;
}
if(x12_count <= best_count) {
best_count = x12_count;
best_scheme = DM_X12;
}
if(c40_count <= best_count) {
best_count = c40_count;
best_scheme = DM_C40;
}
return best_scheme;
}
int dm200encode(struct zint_symbol *symbol, unsigned char source[], unsigned char target[], int *last_mode, int length)
{
/* Encodes data using ASCII, C40, Text, X12, EDIFACT or Base 256 modes as appropriate */
/* Supports encoding FNC1 in supporting systems */
int sp, tp, i, gs1;
int current_mode, next_mode;
int inputlen = length;
int c40_buffer[6], c40_p;
int text_buffer[6], text_p;
int x12_buffer[6], x12_p;
int edifact_buffer[8], edifact_p;
int debug = 0;
#ifndef _MSC_VER
char binary[2 * inputlen];
#else
char* binary = (char*)_alloca(2 * inputlen);
#endif
sp = 0;
tp = 0;
memset(c40_buffer, 0, 6);
c40_p = 0;
memset(text_buffer, 0, 6);
text_p = 0;
memset(x12_buffer, 0, 6);
x12_p = 0;
memset(edifact_buffer, 0, 8);
edifact_p = 0;
strcpy(binary, "");
/* step (a) */
current_mode = DM_ASCII;
next_mode = DM_ASCII;
if(symbol->input_mode == GS1_MODE) { gs1 = 1; } else { gs1 = 0; }
if(gs1) {
target[tp] = 232; tp++;
concat(binary, " ");
if(debug) printf("FN1 ");
} /* FNC1 */
if(symbol->output_options & READER_INIT) {
if(gs1) {
strcpy(symbol->errtxt, "Cannot encode in GS1 mode and Reader Initialisation at the same time");
return ERROR_INVALID_OPTION;
} else {
target[tp] = 234; tp++; /* Reader Programming */
concat(binary, " ");
if(debug) printf("RP ");
}
}
while (sp < inputlen) {
current_mode = next_mode;
/* step (b) - ASCII encodation */
if(current_mode == DM_ASCII) {
next_mode = DM_ASCII;
if(istwodigits(source, sp) && ((sp + 1) != inputlen)) {
target[tp] = (10 * ctoi(source[sp])) + ctoi(source[sp + 1]) + 130;
if(debug) printf("N%d ", target[tp] - 130);
tp++; concat(binary, " ");
sp += 2;
} else {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
if(next_mode != DM_ASCII) {
switch(next_mode) {
case DM_C40: target[tp] = 230; tp++; concat(binary, " ");
if(debug) printf("C40 "); break;
case DM_TEXT: target[tp] = 239; tp++; concat(binary, " ");
if(debug) printf("TEX "); break;
case DM_X12: target[tp] = 238; tp++; concat(binary, " ");
if(debug) printf("X12 "); break;
case DM_EDIFACT: target[tp] = 240; tp++; concat(binary, " ");
if(debug) printf("EDI "); break;
case DM_BASE256: target[tp] = 231; tp++; concat(binary, " ");
if(debug) printf("BAS "); break;
}
} else {
if(source[sp] > 127) {
target[tp] = 235; /* FNC4 */
if(debug) printf("FN4 ");
tp++;
target[tp] = (source[sp] - 128) + 1;
if(debug) printf("A%02X ", target[tp] - 1);
tp++; concat(binary, " ");
} else {
if(gs1 && (source[sp] == '[')) {
target[tp] = 232; /* FNC1 */
if(debug) printf("FN1 ");
} else {
target[tp] = source[sp] + 1;
if(debug) printf("A%02X ", target[tp] - 1);
}
tp++;
concat(binary, " ");
}
sp++;
}
}
}
/* step (c) C40 encodation */
if(current_mode == DM_C40) {
int shift_set, value;
next_mode = DM_C40;
if(c40_p == 0) {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
}
if(next_mode != DM_C40) {
target[tp] = 254; tp++; concat(binary, " ");/* Unlatch */
next_mode = DM_ASCII;
if (debug) printf("ASC ");
} else {
if(source[sp] > 127) {
c40_buffer[c40_p] = 1; c40_p++;
c40_buffer[c40_p] = 30; c40_p++; /* Upper Shift */
shift_set = c40_shift[source[sp] - 128];
value = c40_value[source[sp] - 128];
} else {
shift_set = c40_shift[source[sp]];
value = c40_value[source[sp]];
}
if(gs1 && (source[sp] == '[')) {
shift_set = 2;
value = 27; /* FNC1 */
}
if(shift_set != 0) {
c40_buffer[c40_p] = shift_set - 1; c40_p++;
}
c40_buffer[c40_p] = value; c40_p++;
if(c40_p >= 3) {
int iv;
iv = (1600 * c40_buffer[0]) + (40 * c40_buffer[1]) + (c40_buffer[2]) + 1;
target[tp] = iv / 256; tp++;
target[tp] = iv % 256; tp++;
concat(binary, " ");
if (debug) printf("[%d %d %d] ", c40_buffer[0], c40_buffer[1], c40_buffer[2]);
c40_buffer[0] = c40_buffer[3];
c40_buffer[1] = c40_buffer[4];
c40_buffer[2] = c40_buffer[5];
c40_buffer[3] = 0;
c40_buffer[4] = 0;
c40_buffer[5] = 0;
c40_p -= 3;
}
sp++;
}
}
/* step (d) Text encodation */
if(current_mode == DM_TEXT) {
int shift_set, value;
next_mode = DM_TEXT;
if(text_p == 0) {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
}
if(next_mode != DM_TEXT) {
target[tp] = 254; tp++; concat(binary, " ");/* Unlatch */
next_mode = DM_ASCII;
if (debug) printf("ASC ");
} else {
if(source[sp] > 127) {
text_buffer[text_p] = 1; text_p++;
text_buffer[text_p] = 30; text_p++; /* Upper Shift */
shift_set = text_shift[source[sp] - 128];
value = text_value[source[sp] - 128];
} else {
shift_set = text_shift[source[sp]];
value = text_value[source[sp]];
}
if(gs1 && (source[sp] == '[')) {
shift_set = 2;
value = 27; /* FNC1 */
}
if(shift_set != 0) {
text_buffer[text_p] = shift_set - 1; text_p++;
}
text_buffer[text_p] = value; text_p++;
if(text_p >= 3) {
int iv;
iv = (1600 * text_buffer[0]) + (40 * text_buffer[1]) + (text_buffer[2]) + 1;
target[tp] = iv / 256; tp++;
target[tp] = iv % 256; tp++;
concat(binary, " ");
if (debug) printf("[%d %d %d] ", text_buffer[0], text_buffer[1], text_buffer[2]);
text_buffer[0] = text_buffer[3];
text_buffer[1] = text_buffer[4];
text_buffer[2] = text_buffer[5];
text_buffer[3] = 0;
text_buffer[4] = 0;
text_buffer[5] = 0;
text_p -= 3;
}
sp++;
}
}
/* step (e) X12 encodation */
if(current_mode == DM_X12) {
int value = 0;
next_mode = DM_X12;
if(text_p == 0) {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
}
if(next_mode != DM_X12) {
target[tp] = 254; tp++; concat(binary, " ");/* Unlatch */
next_mode = DM_ASCII;
if (debug) printf("ASC ");
} else {
if(source[sp] == 13) { value = 0; }
if(source[sp] == '*') { value = 1; }
if(source[sp] == '>') { value = 2; }
if(source[sp] == ' ') { value = 3; }
if((source[sp] >= '0') && (source[sp] <= '9')) { value = (source[sp] - '0') + 4; }
if((source[sp] >= 'A') && (source[sp] <= 'Z')) { value = (source[sp] - 'A') + 14; }
x12_buffer[x12_p] = value; x12_p++;
if(x12_p >= 3) {
int iv;
iv = (1600 * x12_buffer[0]) + (40 * x12_buffer[1]) + (x12_buffer[2]) + 1;
target[tp] = iv / 256; tp++;
target[tp] = iv % 256; tp++;
concat(binary, " ");
if (debug) printf("[%d %d %d] ", x12_buffer[0], x12_buffer[1], x12_buffer[2]);
x12_buffer[0] = x12_buffer[3];
x12_buffer[1] = x12_buffer[4];
x12_buffer[2] = x12_buffer[5];
x12_buffer[3] = 0;
x12_buffer[4] = 0;
x12_buffer[5] = 0;
x12_p -= 3;
}
sp++;
}
}
/* step (f) EDIFACT encodation */
if(current_mode == DM_EDIFACT) {
int value = 0;
next_mode = DM_EDIFACT;
if(edifact_p == 3) {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
}
if(next_mode != DM_EDIFACT) {
edifact_buffer[edifact_p] = 31; edifact_p++;
next_mode = DM_ASCII;
} else {
if((source[sp] >= '@') && (source[sp] <= '^')) { value = source[sp] - '@'; }
if((source[sp] >= ' ') && (source[sp] <= '?')) { value = source[sp]; }
edifact_buffer[edifact_p] = value; edifact_p++;
sp++;
}
if(edifact_p >= 4) {
target[tp] = (edifact_buffer[0] << 2) + ((edifact_buffer[1] & 0x30) >> 4); tp++;
target[tp] = ((edifact_buffer[1] & 0x0f) << 4) + ((edifact_buffer[2] & 0x3c) >> 2); tp++;
target[tp] = ((edifact_buffer[2] & 0x03) << 6) + edifact_buffer[3]; tp++;
concat(binary, " ");
if (debug) printf("[%d %d %d %d] ", edifact_buffer[0], edifact_buffer[1], edifact_buffer[2], edifact_buffer[3]);
edifact_buffer[0] = edifact_buffer[4];
edifact_buffer[1] = edifact_buffer[5];
edifact_buffer[2] = edifact_buffer[6];
edifact_buffer[3] = edifact_buffer[7];
edifact_buffer[4] = 0;
edifact_buffer[5] = 0;
edifact_buffer[6] = 0;
edifact_buffer[7] = 0;
edifact_p -= 4;
}
}
/* step (g) Base 256 encodation */
if(current_mode == DM_BASE256) {
next_mode = look_ahead_test(source, inputlen, sp, current_mode, gs1);
if(next_mode == DM_BASE256) {
target[tp] = source[sp];
if(debug) printf("B%02X ", target[tp]);
tp++;
sp++;
concat(binary, "b");
} else {
next_mode = DM_ASCII;
if(debug) printf("ASC ");
}
}
if(tp > 1558) {
return 0;
}
} /* while */
/* Empty buffers */
if(c40_p == 2) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 2] + 1; tp++;
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X A%02X ", target[tp - 2] - 1, target[tp - 1] - 1);
current_mode = DM_ASCII;
}
if(c40_p == 1) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X ", target[tp - 1] - 1);
current_mode = DM_ASCII;
}
if(text_p == 2) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 2] + 1; tp++;
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X A%02X ", target[tp - 2] - 1, target[tp - 1] - 1);
current_mode = DM_ASCII;
}
if(text_p == 1) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X ", target[tp - 1] - 1);
current_mode = DM_ASCII;
}
if(x12_p == 2) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 2] + 1; tp++;
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X A%02X ", target[tp - 2] - 1, target[tp - 1] - 1);
current_mode = DM_ASCII;
}
if(x12_p == 1) {
target[tp] = 254; tp++; /* unlatch */
target[tp] = source[inputlen - 1] + 1; tp++;
concat(binary, " ");
if(debug) printf("ASC A%02X ", target[tp - 1] - 1);
current_mode = DM_ASCII;
}
/* Add length and randomising algorithm to b256 */
i = 0;
while (i < tp) {
if(binary[i] == 'b') {
if((i == 0) || ((i != 0) && (binary[i - 1] != 'b'))) {
/* start of binary data */
int binary_count; /* length of b256 data */
for(binary_count = 0; binary[binary_count + i] == 'b'; binary_count++);
if(binary_count <= 249) {
dminsert(binary, i, 'b');
insert_value(target, i, tp, binary_count); tp++;
} else {
dminsert(binary, i, 'b');
dminsert(binary, i + 1, 'b');
insert_value(target, i, tp, (binary_count / 250) + 249); tp++;
insert_value(target, i + 1, tp, binary_count % 250); tp++;
}
}
}
i++;
}
for(i = 0; i < tp; i++) {
if(binary[i] == 'b') {
int prn, temp;
prn = ((149 * (i + 1)) % 255) + 1;
temp = target[i] + prn;
if (temp <= 255) { target[i] = temp; } else { target[i] = temp - 256; }
}
}
if(debug) {
printf("\n\n");
for(i = 0; i < tp; i++){
printf("%02X ", target[i]);
}
printf("\n");
}
*(last_mode) = current_mode;
return tp;
}
void add_tail(unsigned char target[], int tp, int tail_length, int last_mode)
{
/* adds unlatch and pad bits */
int i, prn, temp;
switch(last_mode) {
case DM_C40:
case DM_TEXT:
case DM_X12:
target[tp] = 254; tp++; /* Unlatch */
tail_length--;
}
for(i = tail_length; i > 0; i--) {
if(i == tail_length) {
target[tp] = 129; tp++; /* Pad */
} else {
prn = ((149 * (tp + 1)) % 253) + 1;
temp = 129 + prn;
if(temp <= 254) {
target[tp] = temp; tp++;
} else {
target[tp] = temp - 254; tp++;
}
}
}
}
int data_matrix_200(struct zint_symbol *symbol, unsigned char source[], int length)
{
int inputlen, i, skew = 0;
unsigned char binary[2200];
int binlen;
int symbolsize, optionsize, calcsize;
int taillength, error_number = 0;
int H, W, FH, FW, datablock, bytes, rsblock;
int last_mode;
unsigned char *grid = 0;
inputlen = length;
binlen = dm200encode(symbol, source, binary, &last_mode, length);
if(binlen == 0) {
strcpy(symbol->errtxt, "Data too long to fit in symbol");
return ERROR_TOO_LONG;
}
if((symbol->option_2 >= 1) && (symbol->option_2 <= 30)) {
optionsize = intsymbol[symbol->option_2 - 1];
} else {
optionsize = -1;
}
calcsize = 29;
for(i = 29; i > -1; i--) {
if(matrixbytes[i] > binlen) {
calcsize = i;
}
}
if(symbol->option_3 == DM_SQUARE) {
/* Force to use square symbol */
switch(calcsize) {
case 2:
case 4:
case 6:
case 9:
case 11:
case 14:
calcsize++;
}
}
symbolsize = optionsize;
if(calcsize > optionsize) {
symbolsize = calcsize;
if(optionsize != -1) {
/* flag an error */
error_number = WARN_INVALID_OPTION;
strcpy(symbol->errtxt, "Data does not fit in selected symbol size");
}
}
H = matrixH[symbolsize];
W = matrixW[symbolsize];
FH = matrixFH[symbolsize];
FW = matrixFW[symbolsize];
bytes = matrixbytes[symbolsize];
datablock = matrixdatablock[symbolsize];
rsblock = matrixrsblock[symbolsize];
taillength = bytes - binlen;
if(taillength != 0) {
add_tail(binary, binlen, taillength, last_mode);
}
// ecc code
if(symbolsize == 29) { skew = 1; }
ecc200(binary, bytes, datablock, rsblock, skew);
{ // placement
int x, y, NC, NR, *places;
NC = W - 2 * (W / FW);
NR = H - 2 * (H / FH);
places = (int*)malloc(NC * NR * sizeof(int));
ecc200placement(places, NR, NC);
grid = (unsigned char*)malloc(W * H);
memset(grid, 0, W * H);
for (y = 0; y < H; y += FH) {
for (x = 0; x < W; x++)
grid[y * W + x] = 1;
for (x = 0; x < W; x += 2)
grid[(y + FH - 1) * W + x] = 1;
}
for (x = 0; x < W; x += FW) {
for (y = 0; y < H; y++)
grid[y * W + x] = 1;
for (y = 0; y < H; y += 2)
grid[y * W + x + FW - 1] = 1;
}
for (y = 0; y < NR; y++) {
for (x = 0; x < NC; x++) {
int v = places[(NR - y - 1) * NC + x];
//fprintf (stderr, "%4d", v);
if (v == 1 || (v > 7 && (binary[(v >> 3) - 1] & (1 << (v & 7)))))
grid[(1 + y + 2 * (y / (FH - 2))) * W + 1 + x + 2 * (x / (FW - 2))] = 1;
}
//fprintf (stderr, "\n");
}
for(y = H - 1; y >= 0; y--) {
int x;
for(x = 0; x < W; x++) {
if(grid[W * y + x]) {
set_module(symbol, (H - y) - 1, x);
}
}
symbol->row_height[(H - y) - 1] = 1;
}
free(grid);
free(places);
}
symbol->rows = H;
symbol->width = W;
return error_number;
}
int dmatrix(struct zint_symbol *symbol, unsigned char source[], int length)
{
int error_number;
if(symbol->option_1 <= 1) {
/* ECC 200 */
error_number = data_matrix_200(symbol, source, length);
} else {
/* ECC 000 - 140 */
strcpy(symbol->errtxt, "Older Data Matrix standards are no longer supported");
error_number = ERROR_INVALID_OPTION;
}
return error_number;
}