zint/backend/code16k.c
2008-11-17 08:47:42 +00:00

461 lines
12 KiB
C

/* code16k.c - Handles Code 16k stacked symbology */
/*
libzint - the open source barcode library
Copyright (C) 2008 Robin Stuart <robin@zint.org.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/* Updated to comply with BS EN 12323:2005 */
/* up to 77 characters or 154 numbers */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#define TRUE 1
#define FALSE 0
#define SHIFTA 90
#define LATCHA 91
#define SHIFTB 92
#define LATCHB 93
#define SHIFTC 94
#define LATCHC 95
#define AORB 96
#define ABORC 97
#define CANDB 98
#define CANDBB 99
int list[2][170];
/* EN 12323 Table 1 - "Code 16K" character encodations */
static char *C16KTable[107] = {"212222", "222122", "222221", "121223", "121322", "131222", "122213",
"122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222",
"123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222",
"321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323",
"131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133",
"112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113",
"213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111",
"221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214",
"112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112",
"134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112",
"421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311",
"411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232",
"211133"};
/* EN 12323 Table 3 and Table 4 - Start patterns and stop patterns */
static char *C16KStartStop[8] = {"3211", "2221", "2122", "1411", "1132", "1231", "1114", "3112"};
/* EN 12323 Table 5 - Start and stop values defining row numbers */
static int C16KStartValues[16] = {0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7};
static int C16KStopValues[16] = {0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 0, 1, 2, 3};
int parunmodd(unsigned char llyth);
void grwp(int *indexliste);
void dxsmooth(int *indexliste);
void c16k_set_a(unsigned char source, unsigned int values[], unsigned int *bar_chars)
{
if(source > 127) {
if(source < 160) {
values[(*bar_chars)] = source + 64 - 128;
} else {
values[(*bar_chars)] = source - 32 - 128;
}
} else {
if(source < 32) {
values[(*bar_chars)] = source + 64;
} else {
values[(*bar_chars)] = source - 32;
}
}
(*bar_chars)++;
}
void c16k_set_b(unsigned char source, unsigned int values[], unsigned int *bar_chars)
{
if(source > 127) {
values[(*bar_chars)] = source - 32 - 128;
} else {
values[(*bar_chars)] = source - 32;
}
(*bar_chars)++;
}
void c16k_set_c(unsigned char source_a, unsigned char source_b, unsigned int values[], unsigned int *bar_chars)
{
int weight;
weight = (10 * ctoi(source_a)) + ctoi(source_b);
values[(*bar_chars)] = weight;
(*bar_chars)++;
}
int code16k(struct zint_symbol *symbol, unsigned char source[])
{
char width_pattern[100];
int current_row, rows_needed, flip_flop, looper, first_check, second_check;
int indexliste, indexchaine, pads_needed;
char set[160], fset[160], mode, last_set, last_fset;
unsigned int i, j, k, m, e_count, read, mx_reader, writer;
unsigned int values[160];
unsigned int bar_characters;
strcpy(width_pattern, "");
float glyph_count;
int errornum, first_sum, second_sum;
int input_length;
errornum = 0;
input_length = ustrlen(source);
if(input_length > 157) {
strcpy(symbol->errtxt, "Input too long [231]");
return ERROR_TOO_LONG;
}
e_count = 0;
bar_characters = 0;
for(i = 0; i < 160; i++) {
values[i] = 0;
set[i] = ' ';
fset[i] = ' ';
}
/* Detect extended ASCII characters */
for(i = 0; i < input_length; i++) {
if(source[i] >=128) {
fset[i] = 'f';
}
}
fset[i] = '\0';
/* Decide when to latch to extended mode */
for(i = 0; i < input_length; i++) {
j = 0;
if(fset[i] == 'f') {
do {
j++;
} while(fset[i + j] == 'f');
if((j >= 5) || ((j >= 3) && ((i + j) == input_length))) {
for(k = 0; k <= j; k++) {
fset[i + k] = 'F';
}
}
}
}
/* Detect mode A, B and C characters */
indexliste = 0;
indexchaine = 0;
mode = parunmodd(source[indexchaine]);
for(i = 0; i < 160; i++) {
list[0][i] = 0;
}
do {
list[1][indexliste] = mode;
while ((list[1][indexliste] == mode) && (indexchaine < input_length)) {
list[0][indexliste]++;
indexchaine++;
mode = parunmodd(source[indexchaine]);
}
indexliste++;
} while (indexchaine < input_length);
dxsmooth(&indexliste);
/* Resolve odd length LATCHC blocks */
if((list[1][0] == LATCHC) && ((list[0][0] % 2) == 1)) {
for(i = 1; i <= indexliste; i++) {
list[0][i] = list[0][i - 1];
list[1][i] = list[1][i - 1];
}
list[0][1]--;
list[0][0] = 1;
list[1][0] = LATCHB;
indexliste++;
}
if(indexliste > 1) {
for(i = 1; i < indexliste; i++) {
if((list[1][i] == LATCHC) && ((list[0][i] % 2) == 1)) {
list[0][i - 1]++;
list[0][i]--;
}
}
}
/* Put set data into set[] */
read = 0;
for(i = 0; i < indexliste; i++) {
for(j = 0; j < list[0][i]; j++) {
switch(list[1][i]) {
case SHIFTA: set[read] = 'a'; break;
case LATCHA: set[read] = 'A'; break;
case SHIFTB: set[read] = 'b'; break;
case LATCHB: set[read] = 'B'; break;
case LATCHC: set[read] = 'C'; break;
}
read++;
}
}
/* Make sure the data will fit in the symbol */
last_set = ' ';
last_fset = ' ';
glyph_count = 0.0;
for(i = 0; i < input_length; i++) {
if((set[i] == 'a') || (set[i] == 'b')) {
glyph_count = glyph_count + 1.0;
}
if(fset[i] == 'f') {
glyph_count = glyph_count + 1.0;
}
if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) {
if(set[i] != last_set) {
last_set = set[i];
glyph_count = glyph_count + 1.0;
}
}
if(i == 0) {
if((set[i] == 'B') && (set[1] == 'C')) {
glyph_count = glyph_count - 1.0;
}
if((set[i] == 'B') && (set[1] == 'B')) {
if(set[2] == 'C') {
glyph_count = glyph_count - 1.0;
}
}
if(fset[i] == 'F') {
last_fset = 'F';
glyph_count = glyph_count + 2.0;
}
} else {
if((fset[i] == 'F') && (fset[i - 1] != 'F')) {
last_fset = 'F';
glyph_count = glyph_count + 2.0;
}
if((fset[i] != 'F') && (fset[i - 1] == 'F')) {
last_fset = ' ';
glyph_count = glyph_count + 2.0;
}
}
if(set[i] == 'C') {
glyph_count = glyph_count + 0.5;
} else {
glyph_count = glyph_count + 1.0;
}
}
if(glyph_count > 77.0) {
strcpy(symbol->errtxt, "Input too long [232]");
return ERROR_TOO_LONG;
}
/* Calculate how tall the symbol will be */
glyph_count = glyph_count + 2.0;
i = glyph_count;
rows_needed = (i/5);
if(i%5 > 0) { rows_needed++; }
if(rows_needed == 1) {
rows_needed = 2;
}
/* start with the mode character - Table 2 */
m = 0;
switch(set[0]) {
case 'A': m = 0; break;
case 'B': m = 1; break;
case 'C': m = 2; break;
}
if((set[0] == 'B') && (set[1] == 'C')) { m = 5; }
if(((set[0] == 'B') && (set[1] == 'B')) && (set[2] == 'C')) { m = 6; }
values[bar_characters] = (7 * (rows_needed - 2)) + m; /* see 4.3.4.2 */
bar_characters++;
if(fset[0] == 'F') {
switch(set[0]) {
case 'A':
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
}
/* Encode the data */
read = 0;
do {
if((read != 0) && (set[read] != set[read - 1]))
{ /* Latch different code set */
switch(set[read])
{
case 'A':
values[bar_characters] = 101;
bar_characters++;
break;
case 'B':
values[bar_characters] = 100;
bar_characters++;
break;
case 'C':
if(!((read == 1) && (set[0] == 'B'))) { /* Not Mode C/Shift B */
if(!((read == 2) && ((set[0] == 'B') && (set[1] == 'B')))) {
/* Not Mode C/Double Shift B */
values[bar_characters] = 99;
bar_characters++;
}
}
break;
}
}
if((read != 0) && (fset[read] != fset[read - 1])) {
if(fset[read] == 'F') {
/* Latch beginning of extended mode */
switch(set[0]) {
case 'A':
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
}
if(fset[read - 1] == 'F') {
/* Latch end of extended mode */
switch(set[0]) {
case 'A':
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
}
}
if(fset[i] == 'f') {
/* Shift extended mode */
switch(set[i]) {
case 'A':
values[bar_characters] = 101;
break;
case 'B':
values[bar_characters] = 100;
break;
}
bar_characters++;
}
if((set[i] == 'a') || (set[i] == 'b')) {
/* Insert shift character */
values[bar_characters] = 98;
bar_characters++;
}
switch(set[read])
{ /* Encode data characters */
case 'A': c16k_set_a(source[read], values, &bar_characters);
read++;
break;
case 'B': c16k_set_b(source[read], values, &bar_characters);
read++;
break;
case 'C': c16k_set_c(source[read], source[read + 1], values, &bar_characters);
read += 2;
break;
}
} while (read < ustrlen(source));
pads_needed = 5 - ((bar_characters + 2) % 5);
if(pads_needed == 5) {
pads_needed = 0;
}
if((bar_characters + pads_needed) < 8) {
pads_needed += 8 - (bar_characters + pads_needed);
}
for(i = 0; i < pads_needed; i++) {
values[bar_characters] = 106;
bar_characters++;
}
/* Calculate check digits */
first_sum = 0;
second_sum = 0;
for(i = 0; i < bar_characters; i++)
{
first_sum += (i+2) * values[i];
second_sum += (i+1) * values[i];
}
first_check = first_sum % 107;
second_sum += first_check * (bar_characters + 1);
second_check = second_sum % 107;
values[bar_characters] = first_check;
values[bar_characters + 1] = second_check;
bar_characters += 2;
for(current_row = 0; current_row < rows_needed; current_row++) {
strcpy(width_pattern, "");
concat(width_pattern, C16KStartStop[C16KStartValues[current_row]]);
concat(width_pattern, "1");
for(i = 0; i < 5; i++) {
concat(width_pattern, C16KTable[values[(current_row * 5) + i]]);
}
concat(width_pattern, C16KStartStop[C16KStopValues[current_row]]);
/* Write the information into the symbol */
writer = 0;
flip_flop = 1;
for (mx_reader = 0; mx_reader < strlen(width_pattern); mx_reader++) {
for(looper = 0; looper < ctoi(width_pattern[mx_reader]); looper++) {
if(flip_flop == 1) {
symbol->encoded_data[current_row][writer] = '1';
writer++; }
else {
symbol->encoded_data[current_row][writer] = '0';
writer++; }
}
if(flip_flop == 0) { flip_flop = 1; } else { flip_flop = 0; }
}
symbol->row_height[current_row] = 10;
}
symbol->rows = rows_needed;
symbol->width = 70;
return errornum;
}